Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.700
JCR 5-Year IF: 0.700
SCOPUS CiteScore: 1.8
Issues per year: 4
Current issue: Nov 2024
Next issue: Feb 2025
Avg review time: 56 days
Avg accept to publ: 60 days
APC: 300 EUR


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

3,031,850 unique visits
1,179,228 downloads
Since November 1, 2009



Robots online now
SemanticScholar
bingbot


SCOPUS CiteScore

SCOPUS CiteScore


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 24 (2024)
 
     »   Issue 4 / 2024
 
     »   Issue 3 / 2024
 
     »   Issue 2 / 2024
 
     »   Issue 1 / 2024
 
 
 Volume 23 (2023)
 
     »   Issue 4 / 2023
 
     »   Issue 3 / 2023
 
     »   Issue 2 / 2023
 
     »   Issue 1 / 2023
 
 
 Volume 22 (2022)
 
     »   Issue 4 / 2022
 
     »   Issue 3 / 2022
 
     »   Issue 2 / 2022
 
     »   Issue 1 / 2022
 
 
 Volume 21 (2021)
 
     »   Issue 4 / 2021
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
  View all issues  


FEATURED ARTICLE

A Proposed Signal Reconstruction Algorithm over Bandlimited Channels for Wireless Communications, ASHOUR, A., KHALAF, A., HUSSEIN, A., HAMED, H., RAMADAN, A.
Issue 1/2023

AbstractPlus






LATEST NEWS

2024-Jun-20
Clarivate Analytics published the InCites Journal Citations Report for 2023. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.700 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.600.

2023-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2022. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.800 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 1.000.

2023-Jun-05
SCOPUS published the CiteScore for 2022, computed by using an improved methodology, counting the citations received in 2019-2022 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2022 is 2.0. For "General Computer Science" we rank #134/233 and for "Electrical and Electronic Engineering" we rank #478/738.

2022-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2021. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.825 (0.722 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.752.

2022-Jun-16
SCOPUS published the CiteScore for 2021, computed by using an improved methodology, counting the citations received in 2018-2021 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2021 is 2.5, the same as for 2020 but better than all our previous results.

Read More »


    
 

  2/2013 - 9

 HIGH-IMPACT PAPER 

Dual Cage High Power Induction Motor with Direct Start-up. Design and FEM Analysis

LIVADARU, L. See more information about LIVADARU, L. on SCOPUS See more information about LIVADARU, L. on IEEExplore See more information about LIVADARU, L. on Web of Science, SIMION, A. See more information about  SIMION, A. on SCOPUS See more information about  SIMION, A. on SCOPUS See more information about SIMION, A. on Web of Science, MUNTEANU, A. See more information about  MUNTEANU, A. on SCOPUS See more information about  MUNTEANU, A. on SCOPUS See more information about MUNTEANU, A. on Web of Science, COJAN, M. See more information about  COJAN, M. on SCOPUS See more information about  COJAN, M. on SCOPUS See more information about COJAN, M. on Web of Science, DABIJA, O. See more information about DABIJA, O. on SCOPUS See more information about DABIJA, O. on SCOPUS See more information about DABIJA, O. on Web of Science
 
Extra paper information in View the paper record and citations in Google Scholar View the paper record and similar papers in Microsoft Bing View the paper record and similar papers in Semantic Scholar the AI-powered research tool
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,402 KB) | Citation | Downloads: 1,081 | Views: 3,398

Author keywords
direct start-up, dual cage, finite element analysis, high-power induction motor, magnetic wedges

References keywords
induction(14), rotor(8), motors(7), slot(6), motor(6), wedges(5), magnetic(5), design(5), analysis(5), speed(4)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2013-05-31
Volume 13, Issue 2, Year 2013, On page(s): 55 - 58
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2013.02009
Web of Science Accession Number: 000322179400009
SCOPUS ID: 84878949929

Abstract
Quick view
Full text preview
This paper presents an investigation on the design of high-power induction motor with special constraints. Direct online start-up and pull-up torque of rather high value represent two of the imposed requirements. Three different structures are analyzed, which involve deep bars, magnetic wedges and double cage respectively. The proposed solution advances a new rotor structure with two different rotor cages. The first cage acts mainly during start-up and is made of iron with both electric and magnetic properties. The second one is made of copper and represents the main rotor winding. It has a particular cross-section of the bars in order to carry into effect the required constraints both during start-up and steady-state. The proposed models are finally evaluated by means of finite element method analysis.


References | Cited By  «-- Click to see who has cited this paper

[1] I. Boldea, S. Nasar. The Induction Machines Design Handbook, CRC Press, 2010.

[2] J. Pyrhonen, T. Jokinen, V. Hrabovkova. Design of rotating electrical machines, Wiley & Sons, 2008.
[CrossRef]


[3] K. Gyftakis, J. Kappatou, A. Safacas, "FEM study of asynchronous cage motors combining NEMA's classes A and D slot geometry". In Proc. of ICEM 2010, Rome, pp. 1-6, 6-8 Sept. 2010.

[4] K. Gyftakis, D. Athanasopoulos, J. Kappatou, "Study of double cage induction motors with different rotor bar materials", In Proc. of ICEM 2012, Marseille, pp. 1450-1456, 2-5 Sept. 2012.

[5] R. Hanna, W. Hiscock, P. Klinovski, "Failure Analysis of Three Slow-Speed Induction Motors for Reciprocating Load Application". IEEE Trans Ind. Applic., Vol.43, No.2, pp. 429-435, March/April 2007.
[CrossRef] [Web of Science Times Cited 26] [SCOPUS Times Cited 28]


[6] R. Curiac, H. Li, "Improvements in Energy Efficiency of Induction Motors by the Use of Magnetic Wedges", In Proc. of Petroleum and Chemical Industry Conference (PCIC 2011), Toronto, pp. 1-6, 19-21 Sept. 2011.

[7] Gh. Madescu, M. Greconici, M. Biriescu, M. Mot, "Effects of stator slot magnetic wedges on the induction motor performances", In Proc. of OPTIM 2012 Conference, Brasov, pp. 489-492, 24-26 May 2012.

[8] J. Kappatou, K. Gyftakis, A. Safacas, "A study of the effects of the stator slots wedges material on the behavior of an induction machine", In Proc. of ICEM 2008, Vilamoura, pp. 1-6, 6-9 Sept. 2010.

[9] Z. Milojkovic, D. Ban, M. Petrinic, J. Studiz, Z. Maljkovic, J. Polak, "Application of Magnetic Wedges for Stator Slots of Hydrogenerators", In Proc. of CIGRE 2010, Paris, 2010. [Online] Available: Temporary on-line reference link removed - see the PDF document

[10] M. Dems, K. Komeza, J.K. Sykulski, "Analysis of Effects of Magnetic Slot Wedges on Characteristics of Large Induction Motors", In Proc. of ISEF 2011, Funchal, 2011. [Online] Available: Temporary on-line reference link removed - see the PDF document

[11] D. Meng, B. Li, Y. Xia, "Calculation and Analysis of Magnetic Slot Wedge Impact on Performance of Medium-Size Motors with High-Voltage", Journal of Computation and Theoretical Nanoscience, Vol.9, Nr.10, pp. 1782-1786, Oct. 2012.
[CrossRef] [Web of Science Times Cited 2] [SCOPUS Times Cited 2]


[12] J.F. Gieras, J. Saari, "Performance calculation for a high speed solid-rotor induction motor", In Proc. of IECON 2010, Glandale, pp. 1748-1753, 7-10 Nov. 2010.

[13] J. Pyrhonen, J. Nerg, P. Kurronen, U. Lauber, "High-speed, 8MW, solid-rotor induction motor for gas compression", In Proc. of ICEM 2008, Vilamoura, pp. 1-6, 6-9 Sept. 2010.

[14] Y. Gessese, A. Binder, "Axially slitted, high- speed solid-rotor induction motor technology with copper end-rings", In Proc. of ICEMS 2009, Tokyo, pp. 1-6, 15-18 Nov. 2009.

[15] K. J. Park, K. Kim, S. Lee, D.-H. Koo, K.-C. Koo, J. Lee, "Optimal Design of rotor slot of three-phase induction motor with die-cast copper rotor cage", In Proc. of ICEMS 2008, Wuhan, pp. 61-63, 17-20 Oct. 2008.

[16] T. Tudorache, L. Melcescu, "FEM Optimal Design of Energy Efficient Induction Machines". Advances in Electrical and Computer Engineering, Vol.9, Iss.2, pp. 58-64, Jun. 2009.
[CrossRef] [Full Text] [Web of Science Times Cited 15] [SCOPUS Times Cited 21]


[17] V. Fireteanu, T. Tudorache, O.A. Turcanu, "Optimal Design of Rotor Slot Geometry of Squirrel Type Induction Motors", In Proc. of IEMDC'07, Antalya, Turkey, pp. 537-542, 3-5 May 2007.

[18] S. Sal, L.T. Ergene, "Analysis of the rotor bar geometry's effect on the induction motor performance with finite element method", In Proc. of ELECO 2010, Bursa, Turkey, pp. 320-324, 2-5 Dec. 2010.

[19] N. Bianchi. Electrical machine analysis using finite elements, Taylor&Francis, 2005.

[20] G. Meunier. The finite element method for electromagnetic modeling, Wiley & Sons, 2008.
[CrossRef] [SCOPUS Times Cited 88]




References Weight

Web of Science® Citations for all references: 43 TCR
SCOPUS® Citations for all references: 139 TCR

Web of Science® Average Citations per reference: 2 ACR
SCOPUS® Average Citations per reference: 7 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2024-12-05 13:09 in 38 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2024
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: 


DNS Made Easy