Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.800
JCR 5-Year IF: 1.000
SCOPUS CiteScore: 2.0
Issues per year: 4
Current issue: Feb 2024
Next issue: May 2024
Avg review time: 54 days
Avg accept to publ: 60 days
APC: 300 EUR


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,582,044 unique visits
1,026,002 downloads
Since November 1, 2009



Robots online now
bingbot
Googlebot
Amazonbot


SCOPUS CiteScore

SCOPUS CiteScore


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 24 (2024)
 
     »   Issue 1 / 2024
 
 
 Volume 23 (2023)
 
     »   Issue 4 / 2023
 
     »   Issue 3 / 2023
 
     »   Issue 2 / 2023
 
     »   Issue 1 / 2023
 
 
 Volume 22 (2022)
 
     »   Issue 4 / 2022
 
     »   Issue 3 / 2022
 
     »   Issue 2 / 2022
 
     »   Issue 1 / 2022
 
 
 Volume 21 (2021)
 
     »   Issue 4 / 2021
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
  View all issues  


FEATURED ARTICLE

Application of the Voltage Control Technique and MPPT of Stand-alone PV System with Storage, HIVZIEFENDIC, J., VUIC, L., LALE, S., SARIC, M.
Issue 1/2022

AbstractPlus






LATEST NEWS

2023-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2022. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.800 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 1.000.

2023-Jun-05
SCOPUS published the CiteScore for 2022, computed by using an improved methodology, counting the citations received in 2019-2022 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2022 is 2.0. For "General Computer Science" we rank #134/233 and for "Electrical and Electronic Engineering" we rank #478/738.

2022-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2021. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.825 (0.722 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.752.

2022-Jun-16
SCOPUS published the CiteScore for 2021, computed by using an improved methodology, counting the citations received in 2018-2021 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2021 is 2.5, the same as for 2020 but better than all our previous results.

2021-Jun-30
Clarivate Analytics published the InCites Journal Citations Report for 2020. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.221 (1.053 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.961.

Read More »


    
 

  2/2014 - 25
View TOC | « Previous Article | Next Article »

An Automatic Optic Disk Detection and Segmentation System using Multi-level Thresholding

KARASULU, B. See more information about KARASULU, B. on SCOPUS See more information about KARASULU, B. on IEEExplore See more information about KARASULU, B. on Web of Science
 
View the paper record and citations in View the paper record and citations in Google Scholar
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,105 KB) | Citation | Downloads: 972 | Views: 3,834

Author keywords
image processing, image segmentation, biomedical imaging, digital imaging, retinal image database

References keywords
optic(17), disc(13), detection(12), images(10), image(9), retinal(8), fundus(8), automatic(8), segmentation(6), methods(5)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2014-05-31
Volume 14, Issue 2, Year 2014, On page(s): 161 - 172
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2014.02025
Web of Science Accession Number: 000340868100025
SCOPUS ID: 84901818521

Abstract
Quick view
Full text preview
Optic disk (OD) boundary localization is a substantial problem in ophthalmic image processing research area. In order to segment the region of OD, we developed an automatic system which involves a multi-level thresholding. The OD segmentation results of the system in terms of average precision, recall and accuracy for DRIVE database are 98.88%, 99.91%, 98.83%, for STARE database are 98.62%, 97.38%, 96.11%, and for DIARETDB1 database are 99.29%, 99.90%, 99.20%, respectively. The experimental results show that our system works properly on retinal image databases with diseased retinas, diabetic signs, and a large degree of quality variability.


References | Cited By  «-- Click to see who has cited this paper

[1] S. Sekhar, W. Al-Nuaimy and A. K. Nandi, "Automated localisation of retinal optic disk using Hough transform", In Proc. 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI 2008), Paris, France, 2008. pp. 1577-80.
[CrossRef] [Web of Science Times Cited 75] [SCOPUS Times Cited 127]


[2] D. Welfer and J. Scharcanski, C. M. Kitamura, M. M. Dal Pizzol, L. W. B. Ludwig, D. R. Marinho, "Segmentation of the optic disk in color eye fundus images using an adaptive morphological approach", Comput Biol Med, vol. 40, no. 2, pp. 124-137, 2010.
[CrossRef] [Web of Science Times Cited 118] [SCOPUS Times Cited 160]


[3] M. Niemeijer, M. D. Abramoff and B. V. Ginneken, "Fast detection of the optic disc and fovea in color fundus photographs", Medical Image Analysis, vol. 13, no. 6, pp. 859-870, 2009.
[CrossRef] [Web of Science Times Cited 157] [SCOPUS Times Cited 204]


[4] C. Duanggate, B. Uyyanonvara, S. S. Makhanov, S. Barman and T. Williamson, "Parameter-free optic disc detection", Comput Med Imaging Graph, vol. 35, no. 1, pp. 51-63, 2011.
[CrossRef] [Web of Science Times Cited 23] [SCOPUS Times Cited 27]


[5] H. F. Jelinek, C. Depardieu, C. Lucas, D. Cornforth, W. Huang and M. J. Cree, "Towards vessel characterisation in the vicinity of the optic disc in digital retinal images", in Proc. the image and vision computing conference, Otago, New Zealand, 2005.

[6] A. Osareh, M. Mirmehdi, B. Thomas and R. Markham, "Colour morphology and snakes for optic disc localisation", in Proc. the 6th medical image understanding and analysis conference, A. Houston and R. Zwiggelaar (editors), BMVA Press, pp. 21-24, 2002.

[7] D. Kavitha and D. S. Shenbaga, "Automatic detection of optic disc and exudates in retinal images", in Proc. IEEE Int. conf. on intelligent sensing and information processing (ICISIP 2005), pp. 501-506, 2005.
[CrossRef] [Web of Science Times Cited 27] [SCOPUS Times Cited 48]


[8] K. W. Tobin, E. Chaum, V. P. Govindasamy, T. P. Karnowski and O. Sezer, "Characterization of the optic disc in retinal imagery using a probabilistic approach", in Proc. SPIE International Symposium on Medical Imaging, San Diego, California, USA, vol. 6144:61443F, 2006.
[CrossRef] [Web of Science Times Cited 8] [SCOPUS Times Cited 35]


[9] P. C. Siddalingaswamy and P. K. Gopalakrishna, "Automatic Localization and Boundary Detection of Optic Disc Using Implicit Active Contours", International Journal of Computer Applications, vol. 1, no. 6, pp. 1-5, 2010.

[10] C. Köse, U. ªevik, C. Ikibaº and H. Erdöl, "Simple methods for segmentation and measurement of diabetic retinopathy lesions in retinal fundus images", Comput Methods Programs Biomed, vol. 107, no. 2, pp. 274-293, 2012.
[CrossRef]


[11] C. Muramatsu, T. Nakagawa, A. Sawada, Y. Hatanaka, T. Hara, T. Yamamoto and H. Fujita, "Automated segmentation of optic disc region on retinal fundus photographs: Comparison of contour modeling and pixel classification methods", Comput Methods Programs Biomed, vol. 101, no. 1, pp. 23-32, 2011.
[CrossRef] [Web of Science Times Cited 79] [SCOPUS Times Cited 99]


[12] H.-F. Ng, "Automatic thresholding for defect detection", Pattern Recogn Letters, vol. 27, no. 14, pp. 1644-1649, 2006.
[CrossRef] [Web of Science Times Cited 378] [SCOPUS Times Cited 505]


[13] D.-Y. Huang, T.-W. Lin and W.-C. Hu, "Automatic Multilevel Thresholding Based On Two-Stage Otsu's Method With Cluster Determination By Valley Estimation", International Journal of Innovative Computing, Information and Control, vol. 7, no. 10, pp. 5631-5644, 2011.

[14] N. Otsu, "A Threshold Selection Method from Gray-level Histograms", IEEE Trans. on Syst. Man Cybern, vol. 9, pp. 62-66 , 1979.
[CrossRef] [Web of Science Times Cited 27235] [SCOPUS Times Cited 32663]


[15] M. Niemeijer and B. V. Ginneken, "Digital Retinal Images for Vessel Extraction image (DRIVE) database", 2002, [Online] Available: Temporary on-line reference link removed - see the PDF document

[16] A. Hoover, "STructured Analysis of the Retina (STARE) database", 2000, [Online] Available: Temporary on-line reference link removed - see the PDF document

[17] T. Kauppi, V. Kalesnykiene, J. K. Kamarainen, L. Lenu, I. Sorri, A. Raninen, R. Voutilainen, J. Pietilä, H. Käluiäinen and H. Uusitalo, "Diaretdb1 Diabetic Retinopathy Database and Evaluation Protocol", in Proc. the Medical Image Understanding and Analysis, Aberystwyth, UK, pp. 61-65, 2007.

[18] A. A. A. Youssif, A. Z. Ghalwash and A. A. S. A. Ghoneim, "Optic Disc Detection From Normalized Digital Fundus Images by Means of a Vessels' Direction Matched Filter", IEEE Trans Med Imaging, vol. 27, no. 1, pp. 11-18 , 2008.
[CrossRef] [Web of Science Times Cited 304] [SCOPUS Times Cited 431]


[19] M. Niemeijer, B. V. Ginneken, F. B. terHaar and M. D. Abramoff, "Automatic detection of the optic disc, fovea and vascular arch in digital color photographs of the retina", in Proc. the British Machine Vision Conference, pp. 17.1-17.10, 2005.
[CrossRef] [SCOPUS Times Cited 17]


[20] T. Walter and J. C. Klein, "Segmentation of color fundus images of the human retina: Detection of the optic disc and the vascular tree using morphological techniques". in Proc. Second International Symposium of Medical Data Anlaysis (ISMDA), pp. 282-287, 2001.

[21] R. J. Qureshi, L. Kovacs, B. Harangi, B. Nagy, T. Peto and H. Hajdu, "Combining algorithms for automatic detection of optic disc and macula in fundus images", Computer Vision and Image Understanding, vol. 116, no. 1, pp. 138-145, 2012.
[CrossRef] [Web of Science Times Cited 107] [SCOPUS Times Cited 133]


[22] S. Morales, V. Naranjo, J. Angulo and M. Alcaniz, "Automatic Detection of Optic Disc Based on PCA and Mathematical Morphology", IEEE Trans Med Imaging, vol. 32, no. 4, pp. 786-796, 2013.
[CrossRef] [Web of Science Times Cited 156] [SCOPUS Times Cited 207]


[23] D. Welfer, J. Scharcanski and D. R. Marinho, "A Morphologic two-stage approach for automated optic disk detection in color eye fundus images". Pattern Recogn Letters, vol. 34, no. 5, pp. 476-485, 2013.
[CrossRef] [Web of Science Times Cited 53] [SCOPUS Times Cited 69]


[24] P.-S. Liao, T.-S. Chen and P.-C. Chung, "A fast algorithm for multilevel thresholding", Journal of Information Science and Engineering, vol. 17, no. 5, pp. 713-727, 2001.

[25] X. Zhu, R. M. Rangayyan and A. L. Ells, "Digital Image Processing for Ophthalmology: Detection of the Optic Nerve Head", Synthesis Lectures on Biomedical Engineering, Morgan & Claypool Publishers, vol. 6, no. 1, pp. 1-106, 2011.
[CrossRef] [SCOPUS Times Cited 9]


[26] M. M. Fraz, P. Remagnino, A. Hoppe, B. Uyyanonvara, A. R. Rudnicka, C. G. Owen and S. A. Barman, "Blood vessel segmentation methodologies in retinal images - A survey", Comput Methods Programs Biomed, vol. 108, no. 1, pp. 407-433, 2012.
[CrossRef] [Web of Science Times Cited 671] [SCOPUS Times Cited 847]


[27] The GNU Image Manipulation Program website, 2014, [Online] Available: Temporary on-line reference link removed - see the PDF document

[28] C. D. Manning, P. Raghavan and H. Schütze, "Introduction to Information Retrieval", Draft Online Copy (2009.04.01), Cambridge University Press, New York, NY, USA, 2009. [Online] Available: Temporary on-line reference link removed - see the PDF document

[29] A. Baumann, M. Boltz, J. Ebling, M. Koenig, H. S. Loos, M. Merkel, W. Niem, J. K. Warzelhan and J. Yu, "A review and comparison of measures for automatic video surveillance systems", EURASIP Journal on Image and Video Processing, Article ID: 824726, pp. 1-30, 2008.
[CrossRef] [Web of Science Times Cited 48] [SCOPUS Times Cited 59]


[30] B. Karasulu, "An Approach Based on Simulated Annealing to Optimize the Performance of Extraction of the Flower Region using Mean-Shift Segmentation", Applied Soft Computing, vol. 13, no. 12, pp. 4763-4785, 2013.
[CrossRef] [Web of Science Times Cited 7] [SCOPUS Times Cited 10]


[31] The OD D&S Program website, 2014, [Online] Available: Temporary on-line reference link removed - see the PDF document



References Weight

Web of Science® Citations for all references: 29,446 TCR
SCOPUS® Citations for all references: 35,650 TCR

Web of Science® Average Citations per reference: 920 ACR
SCOPUS® Average Citations per reference: 1,114 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2024-05-17 11:25 in 129 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2024
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: 


DNS Made Easy