Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.825
JCR 5-Year IF: 0.752
SCOPUS CiteScore: 2.5
Issues per year: 4
Current issue: Nov 2022
Next issue: Feb 2023
Avg review time: 74 days
Avg accept to publ: 48 days
APC: 300 EUR


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,007,803 unique visits
806,575 downloads
Since November 1, 2009



Robots online now
Googlebot


SCOPUS CiteScore

SCOPUS CiteScore


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 22 (2022)
 
     »   Issue 4 / 2022
 
     »   Issue 3 / 2022
 
     »   Issue 2 / 2022
 
     »   Issue 1 / 2022
 
 
 Volume 21 (2021)
 
     »   Issue 4 / 2021
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
 Volume 20 (2020)
 
     »   Issue 4 / 2020
 
     »   Issue 3 / 2020
 
     »   Issue 2 / 2020
 
     »   Issue 1 / 2020
 
 
 Volume 19 (2019)
 
     »   Issue 4 / 2019
 
     »   Issue 3 / 2019
 
     »   Issue 2 / 2019
 
     »   Issue 1 / 2019
 
 
  View all issues  








LATEST NEWS

2022-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2021. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.825 (0.722 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.752.

2022-Jun-16
SCOPUS published the CiteScore for 2021, computed by using an improved methodology, counting the citations received in 2018-2021 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering in 2021 is 2.5, the same as for 2020 but better than all our previous results.

2021-Jun-30
Clarivate Analytics published the InCites Journal Citations Report for 2020. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.221 (1.053 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.961.

2021-Jun-06
SCOPUS published the CiteScore for 2020, computed by using an improved methodology, counting the citations received in 2017-2020 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering in 2020 is 2.5, better than all our previous results.

2021-Apr-15
Release of the v3 version of AECE Journal website. We moved to a new server and implemented the latest cryptographic protocols to assure better compatibility with the most recent browsers. Our website accepts now only TLS 1.2 and TLS 1.3 secure connections.

Read More »


    
 

  4/2014 - 3

 HIGH-IMPACT PAPER 

Implementation of Genetic Algorithm in Control Structure of Induction Motor A.C. Drive

BRANDSTETTER, P. See more information about BRANDSTETTER, P. on SCOPUS See more information about BRANDSTETTER, P. on IEEExplore See more information about BRANDSTETTER, P. on Web of Science, DOBROVSKY, M. See more information about  DOBROVSKY, M. on SCOPUS See more information about  DOBROVSKY, M. on SCOPUS See more information about DOBROVSKY, M. on Web of Science, KUCHAR, M. See more information about KUCHAR, M. on SCOPUS See more information about KUCHAR, M. on SCOPUS See more information about KUCHAR, M. on Web of Science
 
View the paper record and citations in View the paper record and citations in Google Scholar
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (891 KB) | Citation | Downloads: 978 | Views: 3,131

Author keywords
Artificial intelligence, genetic algorithms, induction motor, variable speed drive, vector control

References keywords
genetic(9), motor(8), drive(7), control(7), algorithm(7), systems(6), speed(5), intelligent(5), induction(5), controllers(5)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2014-11-30
Volume 14, Issue 4, Year 2014, On page(s): 15 - 20
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2014.04003
Web of Science Accession Number: 000348772500003
SCOPUS ID: 84921640821

Abstract
Quick view
Full text preview
Modern concepts of control systems with digital signal processors allow the implementation of time-consuming control algorithms in real-time, for example soft computing methods. The paper deals with the design and technical implementation of a genetic algorithm for setting proportional and integral gain of the speed controller of the A.C. drive with the vector-controlled induction motor. Important simulations and experimental measurements have been realized that confirm the correctness of the proposed speed controller tuned by the genetic algorithm and the quality speed response of the A.C. drive with changing parameters and disturbance variables, such as changes in load torque.


References | Cited By  «-- Click to see who has cited this paper

[1] P. Vas, Artificial-intelligence-based electrical machines and drives. Oxford science publication, 1999.

[2] P. Fedor, D. Perdukova, "Energy optimization of a dynamic system controller," in Proc. International Joint Conference CISIS'12-ICEUTE'12-SOCO'12 Special Sessions, Book Series: Advances in Intelligent Systems and Computing, 2013, vol. 189, pp. 361-369.

[3] T. Orlowska-Kowalska, M. Kaminski, "FPGA implementation of the multilayer neural network for the speed estimation of the two-mass drive system," IEEE Transactions on Industrial Informatics, vol. 7, no. 3, pp. 436-445, 2011.
[CrossRef] [Web of Science Times Cited 105] [SCOPUS Times Cited 121]


[4] S. Maiti, V. Verma, C. Chakraborty, Y. Hori, "An adaptive speed sensorless induction motor drive with artificial neural network for stability enhancement," IEEE Transactions on Industrial Informatics, vol. 8, no. 4, pp.757-766, 2012.
[CrossRef] [Web of Science Times Cited 97] [SCOPUS Times Cited 124]


[5] A. Saghafinia, H. W. Ping, M. A. Rahman, "High performance induction motor drive using hybrid fuzzy-PI and PI controllers: A review," International Review of Electrical Engineering - IREE, vol. 5, no. 5, pp. 2000-2012, 2010.

[6] P. Girovsky, J. Timko, J. Zilkova, "Shaft sensor-less FOC control of an induction motor using neural estimators," Acta Polytechnica Hungarica, vol. 9, no. 4, pp. 31-45, 2012.

[7] K. M. V. Chandrakala, S. Balamurugan, K. Sankaranarayanan, "Genetic algorithm tuned optimal variable structure system controller for enhanced load frequency control," International Review of Electrical Engineering - IREE, vol. 7, no. 2, pp. 4105-4112, 2012.

[8] N. Ozturk, "Speed control for dc motor drive based on fuzzy and genetic PI controller - A comparative study," Elektronika Ir Elektrotechnika, no. 7, pp. 43-48, 2012.

[9] M. Abachizadeh, M. R. H. Yazdi, A. Yousefi-Koma, "Optimal tuning of PID controllers using artificial bee colony algorithm," in Proc. International Conference on Advanced Intelligent Mechatronics, Montreal, Canada, 2010, pp. 379-384.

[10] A. Rajasekhar, A. Abraham, R. K. Jatoth RK, "Controller tuning using a Cauchy mutated artificial bee colony algorithm," Advances in Intelligent and Soft Computing, Springer Verlag Berlin, vol. 87, pp. 11-18, 2011.

[11] D. E. Goldberg, Genetic algorithms in search, optimization and machine learning. Boston: Addison-Wesley Publishing Comp., 1989.

[12] M. Viteckova, A. Vitecek, Selected methods of adjusting controllers. VSB-Technical University of Ostrava, 2011.

[13] P. Brandstetter, T. Krecek, "Speed and current control of permanent magnet synchronous motor drive using IMC controllers," Advances in Electrical and Computer Engineering, 2012, vol. 12, no. 4, pp. 3-10.
[CrossRef] [Full Text] [Web of Science Times Cited 28] [SCOPUS Times Cited 38]


[14] H. Ben Jmaa Derbel, "Design of PID controllers for time-delay systems by the pole compensation technique," in Proceedings of the 6th International Multi-Conference on Systems, Signals and Devices, 2009, pp. 1-6.

[15] A. Rezazadeh, "Genetic algorithm based servo system parameter estimation during transients," Advances in Electrical and Computer Engineering, vol. 10, no. 2, pp. 77-81, 2010.
[CrossRef] [Full Text] [Web of Science Times Cited 5] [SCOPUS Times Cited 8]


[16] P. Palacky, P. Hudecek, A. Havel, "Real-time estimation of induction motor parameters based on the genetic algorithm," in Proc. International Joint Conference CISIS'12-ICEUTE'12-SOCO'12 Special Sessions, Book Series: Advances in Intelligent Systems and Computing, 2013, vol. 189, pp. 401-409.

[17] M. Mitchell, An Introduction to Genetic Algorithms. Fifth printing, A Bradford Book The MIT Press, Cambridge, Massachusetts; London, England, 1999.

[18] K. F. Man, K. S. Tang, S. Kwong, W. A. Halang, Genetic Algorithms for Control and Signal Processing, series Advances in Industrial Control, Springer Verlag, 211 p., 2011.

[19] C. Elmas, T. Yigit, "Genetic algorithm based on-line tuning of a PI controller for a switched reluctance motor drive," Electric Power Components and Systems, vol.35, no.6, pp. 675-691, 2007.
[CrossRef] [Web of Science Times Cited 24] [SCOPUS Times Cited 32]


[20] P. Brandstetter, M. Dobrovsky, "Speed Control of A. C. Drive with Induction Motor Using Genetic Algorithm," in Proc. International Joint Conference CISIS'12-ICEUTE'12-SOCO'12 Special Sessions, Book Series: Advances in Intelligent Systems and Computing, 2013, vol. 189, pp. 341-350.



References Weight

Web of Science® Citations for all references: 259 TCR
SCOPUS® Citations for all references: 323 TCR

Web of Science® Average Citations per reference: 12 ACR
SCOPUS® Average Citations per reference: 15 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2022-11-23 06:00 in 91 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2022
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: