Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.800
JCR 5-Year IF: 1.000
SCOPUS CiteScore: 2.0
Issues per year: 4
Current issue: Feb 2024
Next issue: May 2024
Avg review time: 58 days
Avg accept to publ: 60 days
APC: 300 EUR


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,594,538 unique visits
1,030,687 downloads
Since November 1, 2009



Robots online now
Googlebot
bingbot
Baiduspider


SCOPUS CiteScore

SCOPUS CiteScore


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 24 (2024)
 
     »   Issue 1 / 2024
 
 
 Volume 23 (2023)
 
     »   Issue 4 / 2023
 
     »   Issue 3 / 2023
 
     »   Issue 2 / 2023
 
     »   Issue 1 / 2023
 
 
 Volume 22 (2022)
 
     »   Issue 4 / 2022
 
     »   Issue 3 / 2022
 
     »   Issue 2 / 2022
 
     »   Issue 1 / 2022
 
 
 Volume 21 (2021)
 
     »   Issue 4 / 2021
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
  View all issues  


FEATURED ARTICLE

Analysis of the Hybrid PSO-InC MPPT for Different Partial Shading Conditions, LEOPOLDINO, A. L. M., FREITAS, C. M., MONTEIRO, L. F. C.
Issue 2/2022

AbstractPlus






LATEST NEWS

2023-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2022. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.800 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 1.000.

2023-Jun-05
SCOPUS published the CiteScore for 2022, computed by using an improved methodology, counting the citations received in 2019-2022 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2022 is 2.0. For "General Computer Science" we rank #134/233 and for "Electrical and Electronic Engineering" we rank #478/738.

2022-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2021. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.825 (0.722 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.752.

2022-Jun-16
SCOPUS published the CiteScore for 2021, computed by using an improved methodology, counting the citations received in 2018-2021 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2021 is 2.5, the same as for 2020 but better than all our previous results.

2021-Jun-30
Clarivate Analytics published the InCites Journal Citations Report for 2020. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.221 (1.053 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.961.

Read More »


    
 

  4/2014 - 8

 HIGH-IMPACT PAPER 

Detection of Inter-turn Faults in Five-Phase Permanent Magnet Synchronous Motors

SAAVEDRA, H. See more information about SAAVEDRA, H. on SCOPUS See more information about SAAVEDRA, H. on IEEExplore See more information about SAAVEDRA, H. on Web of Science, RIBA, J.-R. See more information about  RIBA, J.-R. on SCOPUS See more information about  RIBA, J.-R. on SCOPUS See more information about RIBA, J.-R. on Web of Science, ROMERAL, L. See more information about ROMERAL, L. on SCOPUS See more information about ROMERAL, L. on SCOPUS See more information about ROMERAL, L. on Web of Science
 
View the paper record and citations in View the paper record and citations in Google Scholar
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (890 KB) | Citation | Downloads: 868 | Views: 3,748

Author keywords
permanent magnet motors, fault diagnosis, fault detection, fault tolerance, harmonic analysis

References keywords
magnet(14), permanent(12), machines(12), faults(11), phase(10), stator(8), induction(8), fault(8), winding(7), turn(7)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2014-11-30
Volume 14, Issue 4, Year 2014, On page(s): 49 - 54
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2014.04008
Web of Science Accession Number: 000348772500008
SCOPUS ID: 84921628550

Abstract
Quick view
Full text preview
Five-phase permanent magnet synchronous motors (PMSMs) have inherent fault-tolerant capabilities. This paper analyzes the detection of inter-turn short circuit faults in five-phase PMSMs in their early stage, i.e. with only one turn in short circuit by means of the analysis of the stator currents and the zero-sequence voltage component (ZSVC) spectra. For this purpose, a parametric model of five-phase PMSMs which accounts for the effects of inter-turn short circuits is developed to determine the most suitable harmonic frequencies to be analyzed to detect such faults. The amplitudes of these fault harmonic are analyzed in detail by means of finite-elements method (FEM) simulations, which corroborate the predictions of the parametric model. A low-speed five-phase PMSM for in-wheel applications is studied and modeled. This paper shows that the ZSVC-based method provides better sensitivity to diagnose inter-turn faults in the analyzed low-speed application. Results presented under a wide speed range and different load levels show that it is feasible to diagnose such faults in their early stage, thus allowing applying a post-fault strategy to minimize their effects while ensuring a safe operation.


References | Cited By  «-- Click to see who has cited this paper

[1] F. Baudart, E. Matagne, B. Dehez, F. Labrique, "Optimal current waveforms for torque control of permanent magnet synchronous machines with any number of phases in open circuit," Mathematics and Computers in Simulation, vol. 90, pp. 1-14, April 2013.
[CrossRef] [Web of Science Times Cited 14] [SCOPUS Times Cited 15]


[2] S. Dwari, L. Parsa, "An optimal control technique for multiphase PM machines under open-circuit faults," IEEE Trans. Ind. Electron., vol. 55, no. 5, pp. 1988-1995, May 2008.
[CrossRef] [Web of Science Times Cited 159] [SCOPUS Times Cited 220]


[3] N. Bianchi, S. Bolognani, M. Dai Pre, "Impact of Stator Winding of a Five-Phase Permanent-Magnet Motor on Postfault Operations," IEEE Trans. Ind. Electron., vol. 55, no. 5, pp. 1978-1987, May 2008.
[CrossRef] [Web of Science Times Cited 92] [SCOPUS Times Cited 121]


[4] S. Dwari, L. Parsa, "Fault-Tolerant Control of Five-Phase Permanent-Magnet Motors With Trapezoidal Back EMF," IEEE Trans. Ind. Electron., vol. 58, no. 2, pp. 476-485, Feb. 2011.
[CrossRef] [Web of Science Times Cited 225] [SCOPUS Times Cited 282]


[5] H. A. Toliyat, "Analysis and simulation of five-phase variable-speed induction motor drives under asymmetrical connections," IEEE Trans. Power Electron., vol. 13, no. 4, pp. 748-756, Jul. 1998.
[CrossRef] [Web of Science Times Cited 167] [SCOPUS Times Cited 235]


[6] A. M. El-Refaie, "Fault-tolerant permanent magnet machines: a review," IET Electr. Power Appl., vol. 5, no. 1, pp. 59-74, 2011.
[CrossRef] [Web of Science Times Cited 177] [SCOPUS Times Cited 198]


[7] P. Zheng, Y. Sui, J. Zhao, C. Tong, T. A. Lipo, A. Wang, "Investigation of a Novel Five-Phase Modular Permanent-Magnet In-Wheel Motor," IEEE Trans. Magn., vol. 47, no. 10, pp. 4084-4087, Oct. 2011.
[CrossRef] [Web of Science Times Cited 65] [SCOPUS Times Cited 78]


[8] J.-C. Urresty, J.-R. Riba, M. Delgado, L. Romeral, "Detection of demagnetization faults in surface-mounted permanent magnet synchronous motors by means of the zero-sequence voltage component," IEEE Trans. Energy Convers., vol. 27, no. 1, pp. 42-51, Mar. 2012.
[CrossRef] [Web of Science Times Cited 124] [SCOPUS Times Cited 156]


[9] M. Aktas, "A Novel Method for Inverter Faults Detection and Diagnosis in PMSM Drives of HEVs based on Discrete Wavelet Transform," Advances in Electrical and Computer Engineering vol. 12, no. 4, pp. 33-38, 2012.
[CrossRef] [Full Text] [Web of Science Times Cited 9] [SCOPUS Times Cited 11]


[10] T. Gopalarathnam, H. A. Toliyat, J. C. Moreira, "Multi-Phase Fault-Tolerant Brushless DC Motor Drives," in Proc. of IEEE Industry Applications Conference, 2000, pp. 1683-1688.
[CrossRef]


[11] T. Raminosoa, C. Gerada, N. Othman, L. D. Lillo, "Rotor losses in fault-tolerant permanent magnet synchronous machines," IET Electr. Power Appl., vol. 5, no. 1, pp. 75-88, 2011.
[CrossRef] [Web of Science Times Cited 19] [SCOPUS Times Cited 20]


[12] L. Parsa, H. A. Toliyat, "Sensorless Direct Torque Control of Five-Phase Interior Permanent-Magnet Motor Drives," IEEE Trans. Ind. Appl., vol. 43, no. 4, July/Aug. 2007.
[CrossRef] [Web of Science Times Cited 112] [SCOPUS Times Cited 164]


[13] J. A. Haylock, B. C. Mecrow, A. G. Jack, D. J. Atkinson, "Operation of fault tolerant machines with winding failures," IEEE Trans. Energy Convers., vol. 14, no. 4, pp. 1490-1495, 1999.
[CrossRef] [Web of Science Times Cited 105] [SCOPUS Times Cited 140]


[14] J.-C. Urresty, J.-R. Riba, L. Romeral, "A Back-EMF Based Method to Detect Magnet Failures in PMSMs," IEEE Trans. Magn., vol. 49, no. 1, pp. 591-598, Jan. 2013.
[CrossRef] [Web of Science Times Cited 102] [SCOPUS Times Cited 124]


[15] J.-H. Choi, B.-G. Gu, C.-Y. Won, "Modeling and Analysis of PMSMs under Inter Turn Short Faults," Electr. Eng. Technol., vol. 8, no. 5, pp. 1243-1250, 2013.
[CrossRef] [Web of Science Times Cited 10] [SCOPUS Times Cited 12]


[16] W. Tang, G. Liu, J. Ji, "Winding Turn-to-Turn Faults Detection of Five-Phase Fault-Tolerant Permanent-Magnet Machine Based on Parametric Model," in Proc. 15th International Conference on Electrical Machines and Systems (ICEMS), 2012, pp. 1-6.

[17] D. Casadei, F. Filippetti, M. Mengoni, Y. Gritli, G. Serra, A. Tani, L. Zarri, "Detection of Magnet Demagnetization in Five-Phase Surface-Mounted Permanent Magnet Generators," in Proc. 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG), 2012, pp. 841-848.
[CrossRef] [SCOPUS Times Cited 24]


[18] S. Nandi, "Detection of Stator Faults in Induction Machines Using Residual Saturation Harmonics," IEEE Trans. Ind. Electron., vol. 42, no. 5, pp. 1201-1208, Sep./Oct. 2006.
[CrossRef] [Web of Science Times Cited 57] [SCOPUS Times Cited 77]


[19] A. Bellini, F. Filippetti, C. Tassoni, G. A. Capolino, "Advances in Diagnostic Techniques for Induction Machines," IEEE Trans. Ind. Electron., vol.55, no. 12, pp. 4109V4126, Dec. 2008.
[CrossRef] [Web of Science Times Cited 806] [SCOPUS Times Cited 978]


[20] J.-C. Urresty, J.-R. Riba, L. Romeral, "Diagnosis of Interturn Faults in PMSMs Operating Under Nonstationary Conditions by Applying Order Tracking Filtering," IEEE Trans. Power Electron., vol. 28, no. 1, pp. 507-515, Jan. 2013.
[CrossRef] [Web of Science Times Cited 113] [SCOPUS Times Cited 133]


[21] B. M. Ebrahimi, J. Faiz, "Feature Extraction for Short-Circuit Fault Detection in Permanent-Magnet Synchronous Motors Using Stator-Current Monitoring," IEEE Trans. Power Electronics, vol. 25, no. 10, pp. 2673-2682, Oct. 2010.
[CrossRef] [Web of Science Times Cited 128] [SCOPUS Times Cited 156]


[22] M. A. Awadallah, M. M. Morcos, S. Gopalakrishnan, T. W. Nehl, "Detection of Stator Short Circuits in VSI-Fed Brushless DC Motors Using Wavelet Transform," IEEE Trans. Energy Convers., vol. 21, no. 1, pp. 1-8, March 2006.
[CrossRef] [Web of Science Times Cited 68] [SCOPUS Times Cited 76]


[23] W. Le Roux, R. G. Harley, T. G. Habetler, "Detecting faults in rotors of PM drives," IEEE Ind. Appl. Mag., vol. 14, no. 2, pp. 23-31, March-April 2008.
[CrossRef] [Web of Science Times Cited 38] [SCOPUS Times Cited 41]


[24] M. A. Cash, T. G. Habetler, G. B. Kliman, "Insulation failure prediction in AC machines using line-neutral voltages," IEEE Trans. Ind. Electron., vol. 34, no. 6, pp. 1234-1239, Jun. 1998.
[CrossRef] [Web of Science Times Cited 117] [SCOPUS Times Cited 148]


[25] O. Wallmark, L. Harnefors, O. Carlson, "Control Algorithms for a Fault-Tolerant PMSM Drive," IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 1973-1980, Aug. 2007.
[CrossRef] [Web of Science Times Cited 151] [SCOPUS Times Cited 188]


[26] R. M. Tallam, T. G. Habetler, R. G. Harley, "Transient model for induction machines with stator winding turn faults," IEEE Trans. Ind. Appl., vol. 38, no. 3, pp. 632-637, May-June 2002.
[CrossRef]


[27] L. A. Pereira, C. C. Scharlau, L.F. Fernando Alves, S. Haffner, "Influence of Saturation on the Airgap Induction Waveform of Five-Phase Induction Machines," IEEE Trans. Energy Convers., vol. 27, no. 1, pp. 29-41, March 2012.
[CrossRef] [Web of Science Times Cited 40] [SCOPUS Times Cited 48]


[28] C. C. Yeh, R. J. Povinelli, B. Mirafzal, N. A. O. Demerdash, "Diagnosis of Stator Winding Inter-Turn Shorts in Induction Motors Fed by PWM-Inverter Drive Systems Using a Time-Series Data Mining Technique," in Proc. of IEEE International Conference on Power System Technology, 2004, vol. 1, pp. 891-896.
[CrossRef]


[29] A. Sayed-Ahmed, Y. Chia-Chou, N. A. O. Demerdash, B. Mirafzal, "Analysis of Stator Winding Inter-Turn Short-Circuit Faults in Induction Machines for Identification of the Faulty Phase," in Proc. of the IEEE Industry Applications Conference, 2006, pp. 1519-1524.
[CrossRef] [SCOPUS Times Cited 11]


[30] L. Romeral, J.-C. Urresty, J.-R. Riba, A. Garcia, "Modeling of Surface-Mounted Permanent Magnet Synchronous Motors With Stator Winding Inter-Turn Faults," IEEE Trans. Ind. Electr., vol. 58, no. 5, pp. 1576-1585, May 2011.
[CrossRef] [Web of Science Times Cited 192] [SCOPUS Times Cited 234]




References Weight

Web of Science® Citations for all references: 3,090 TCR
SCOPUS® Citations for all references: 3,890 TCR

Web of Science® Average Citations per reference: 100 ACR
SCOPUS® Average Citations per reference: 125 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2024-05-23 17:47 in 196 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2024
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: 


DNS Made Easy