Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.800
JCR 5-Year IF: 1.000
SCOPUS CiteScore: 2.0
Issues per year: 4
Current issue: Feb 2024
Next issue: May 2024
Avg review time: 75 days
Avg accept to publ: 48 days
APC: 300 EUR


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,530,585 unique visits
1,006,225 downloads
Since November 1, 2009



Robots online now
SemanticScholar
bingbot
Googlebot


SCOPUS CiteScore

SCOPUS CiteScore


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 24 (2024)
 
     »   Issue 1 / 2024
 
 
 Volume 23 (2023)
 
     »   Issue 4 / 2023
 
     »   Issue 3 / 2023
 
     »   Issue 2 / 2023
 
     »   Issue 1 / 2023
 
 
 Volume 22 (2022)
 
     »   Issue 4 / 2022
 
     »   Issue 3 / 2022
 
     »   Issue 2 / 2022
 
     »   Issue 1 / 2022
 
 
 Volume 21 (2021)
 
     »   Issue 4 / 2021
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
  View all issues  


FEATURED ARTICLE

Application of the Voltage Control Technique and MPPT of Stand-alone PV System with Storage, HIVZIEFENDIC, J., VUIC, L., LALE, S., SARIC, M.
Issue 1/2022

AbstractPlus


SAMPLE ARTICLES

Transformer Core Saturation Fault Analysis using Current Sensor Signals and Thermal Image Features, VIDHYA, R., VANAJA RANJAN, P., SHANKER, N. R.
Issue 4/2023

AbstractPlus

Modeling, Control, and Experimental Verification of a 500 kW DFIG Wind Turbine, AYKUT, O., ULU, C., KOMURGOZ, G.
Issue 1/2022

AbstractPlus

Application of the Voltage Control Technique and MPPT of Stand-alone PV System with Storage, HIVZIEFENDIC, J., VUIC, L., LALE, S., SARIC, M.
Issue 1/2022

AbstractPlus

Robust 2-bit Quantization of Weights in Neural Network Modeled by Laplacian Distribution, PERIC, Z., DENIC, B., DINCIC, M., NIKOLIC, J.
Issue 3/2021

AbstractPlus

Comparison of Control Configurations and MPPT Algorithms for Single-Phase Grid-Connected Photovoltaic Inverter, PRASATSAP, U., NERNCHAD, N., TERMRITTHIKUN, C., SRITA, S., KAEWCHUM, T., SOMKUN, S.
Issue 2/2023

AbstractPlus

Dual Rotor Radial Flux Concentrated Wound Permanent Magnet Synchronous Machine with High Power Density, VIRLAN, B., MUNTEANU, A., LIVADARU, L., BOBU, A., Ionut NACU, I., SIMION, A.
Issue 4/2023

AbstractPlus




LATEST NEWS

2023-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2022. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.800 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 1.000.

2023-Jun-05
SCOPUS published the CiteScore for 2022, computed by using an improved methodology, counting the citations received in 2019-2022 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2022 is 2.0. For "General Computer Science" we rank #134/233 and for "Electrical and Electronic Engineering" we rank #478/738.

2022-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2021. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.825 (0.722 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.752.

2022-Jun-16
SCOPUS published the CiteScore for 2021, computed by using an improved methodology, counting the citations received in 2018-2021 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2021 is 2.5, the same as for 2020 but better than all our previous results.

2021-Jun-30
Clarivate Analytics published the InCites Journal Citations Report for 2020. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.221 (1.053 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.961.

Read More »


    
 

  1/2015 - 18

 HIGH-IMPACT PAPER 

Efficiency Analyses of a DC Residential Power Distribution System for the Modern Home

GELANI, H. E. See more information about GELANI, H. E. on SCOPUS See more information about GELANI, H. E. on IEEExplore See more information about GELANI, H. E. on Web of Science, DASTGEER, F. See more information about DASTGEER, F. on SCOPUS See more information about DASTGEER, F. on SCOPUS See more information about DASTGEER, F. on Web of Science
 
View the paper record and citations in View the paper record and citations in Google Scholar
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,442 KB) | Citation | Downloads: 1,376 | Views: 4,916

Author keywords
DC-DC power converters, DC power distribution, energy conversion, power system modeling, power system simulation

References keywords
power(17), energy(10), systems(8), distribution(8), electronics(6), distributed(6), system(5), society(5), residential(5), link(5)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2015-02-28
Volume 15, Issue 1, Year 2015, On page(s): 135 - 142
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2015.01018
Web of Science Accession Number: 000352158600018
SCOPUS ID: 84924810644

Abstract
Quick view
Full text preview
The electric power system started as DC back in the nineteenth century. However, the DC paradigm was soon ousted by AC due to inability of DC to change its voltage level. Now, after many years, with the development of power electronic converters capable of stepping-up and down DC voltage and converting it to-and-from AC, DC appears to be challenging AC and attempting a comeback. We now have DC power generation by solar cells, fuel cells and wind farms, DC power transmission in the form of HVDC (High Voltage DC) transmission, DC power utilization by various modern electronic loads and DC power distribution that maybe regarded as still in research phase. This paper is an attempt to investigate feasibility of DC in the distribution portion of electrical power system. Specifically, the efficiency of a DC distribution system for residential localities is determined while keeping in view the concept of daily load variation. The aim is to bring out a more practical value of system efficiency as the efficiencies of DC/DC converters making up the system vary with load variation. This paper presents the modeling and simulation of a DC distribution system and efficiency results for various scenarios are presented.


References | Cited By  «-- Click to see who has cited this paper

[1] C. Sulzberger, "Triumph of ac, From Pearl Street to Niagra," IEEE Power & Energy Magazine, pp. 64 - 67, May/June 2003.
[CrossRef] [SCOPUS Times Cited 29]


[2] World's most powerful DC data center online, [Online] Available: Temporary on-line reference link removed - see the PDF document

[3] A. Sannino, G. Postiglione, M. H. J. Bollen, "Feasibility of a dc network for commercial facilities", IEEE Transactions on Industry Applications, vol. 39, Issue 5,pp. 14991507, Sept.-Oct. 2003.
[CrossRef] [Web of Science Times Cited 309] [SCOPUS Times Cited 394]


[4] K. Engelen, E. Shun, P. Vermeyen, I. Pardon, R. Dhulst, J. Driesen, R. Belmans, "The feasibility of small-scale residential dc distribution systems," IEEE Inudustrial Electronics Conference, pp. 2618-2632, Nov. 2006.
[CrossRef] [SCOPUS Times Cited 117]


[5] F. Dastgeer, A. Kalam, "Efficiency comparison of DC and AC distribution systems for distributed generation", Australasian Universities Power Engineering Conference, pp. 1-5, 2009.

[6] M. Starke, L. Tolbert, B. Ozpineci, "AC vs. dc distribution: a loss comparison", Transmission and Distribution Conference and Exposition, 2008. T&D. IEEE/PES, pp. 1-7, April 2008.
[CrossRef] [SCOPUS Times Cited 260]


[7] D. Nilsson, A. Sannino, "Efficiency analysis of low- and medium- voltage dc distribution systems", Power Engineering Society General Meeting, vol. 2, pp. 2315-2321, June 2004.
[CrossRef]


[8] M. Starke, F. Li, L. M. Tolbert, B. Ozpineci, "AC vs. dc distribution: Maximum transfer capability", Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, pp. 1 - 6, July 2008.
[CrossRef] [SCOPUS Times Cited 126]


[9] D. Hammerstrom, "AC versus dc distribution systems did we get it right?", Power Engineering Society General Meeting, pp. 1-5, June 2007.
[CrossRef] [SCOPUS Times Cited 319]


[10] F. Dastgeer, "DC Distribution Systems for Residential Areas Powered by Distributed Generation", Ph.D. thesis, Victoria University, 2011.

[11] P. Biczel, "Power electronic converters in dc microgrids," Fifth International Conference-Workshop - CPE 2007, pp. 1 - 6.

[12] H. Kakigano, Y. Miura, T. Ise, T. Momose, H. Hayakawa, "Fundamental characteristics of dc microgrid for residential houses with cogeneration system in each house," Power and Energy Society General Meeting, 2008, pp. 1 - 8.
[CrossRef] [SCOPUS Times Cited 93]


[13] Y. Zhu, Z. Yin, J. Tian, "Microgrids based on dc energy pool," IEEE Energy 2030 Conference, 2008.
[CrossRef] [SCOPUS Times Cited 12]


[14] F. Dastgeer, A. Kalam, "Evolution of dc distributed power system stability", International Review of Electrical Engineering, part B, vol. 5, pp. 652-662, April, 2010.

[15] E. W. Gholdston, K. Karimi, F. C. Lee, J. Rajagopalan, Y. Panov, B. Manners, "Stability of large dc power systems using switch converters with application to the international space station," Proceedings of the 31st Intersociety Energy Conversion Engineering Conference 1996, pp. 166-171.
[CrossRef]


[16] C. M. Wildrick, F. C. Lee, B. H. Cho, B. Choi, "A method of defining the load impedance specification for a stable distributed power system," IEEE Transaction on Power Electronics, vol. 10, pp. 280-5, May. 1995.
[CrossRef] [Web of Science Times Cited 378] [SCOPUS Times Cited 492]


[17] X. Feng, Z. Ye, K. Xing, F. C. Lee, "Individual load impedance specifcation for a stable dc distributed power system," The 14th Annual Applied Power Electronics Conference and Exposition, March 1999, pp. 923-929.
[CrossRef] [Web of Science Times Cited 77]


[18] X. Feng, C. Liu, Z. Ye, F.C Lee, D. Borojevic, "Monitoring the stability of dc distributed power systems," The 25th Annual Conference of the IEEE Industrial Electronics Society, 1999.
[CrossRef]


[19] General Motors Corporation, "High efficiency power system with plural parallel DC/DC converters," US Patent 6 166 934, Jun. 30, 1999.

[20] Powerstax DC/DC converters - Details [Online] Available: Temporary on-line reference link removed - see the PDF document

[21] Cosel DC/DC converters - Details [Online] Available: Temporary on-line reference link removed - see the PDF document

[22] Table 2010 Residential Energy End-Use Splits, by Fuel Type (QuadrillionBtu), [Online] Available: Temporary on-line reference link removed - see the PDF document

[23] Table 5. Residential Average Monthly Bill by Census Division, and State, U.S Energy Information Administration. [Online] Available: Temporary on-line reference link removed - see the PDF document

[24] J. W. Kolar, F. Krismer, Y. Lobsiger, J. Muhlethaler, T. Nussbaumer, J. Minibock, "Extreme efficiency power electronics", 7th International Conference on Integrated Power Electronics Systems (CIPS), pp. 1-22, 2012.



References Weight

Web of Science® Citations for all references: 764 TCR
SCOPUS® Citations for all references: 1,842 TCR

Web of Science® Average Citations per reference: 31 ACR
SCOPUS® Average Citations per reference: 74 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2024-04-17 14:16 in 76 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2024
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: 


DNS Made Easy