Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.800
JCR 5-Year IF: 1.000
SCOPUS CiteScore: 2.0
Issues per year: 4
Current issue: Feb 2024
Next issue: May 2024
Avg review time: 78 days
Avg accept to publ: 48 days
APC: 300 EUR


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,498,688 unique visits
994,465 downloads
Since November 1, 2009



Robots online now
bingbot
Googlebot
ZoominfoBot
Sogou


SCOPUS CiteScore

SCOPUS CiteScore


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 24 (2024)
 
     »   Issue 1 / 2024
 
 
 Volume 23 (2023)
 
     »   Issue 4 / 2023
 
     »   Issue 3 / 2023
 
     »   Issue 2 / 2023
 
     »   Issue 1 / 2023
 
 
 Volume 22 (2022)
 
     »   Issue 4 / 2022
 
     »   Issue 3 / 2022
 
     »   Issue 2 / 2022
 
     »   Issue 1 / 2022
 
 
 Volume 21 (2021)
 
     »   Issue 4 / 2021
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
  View all issues  


FEATURED ARTICLE

Analysis of the Hybrid PSO-InC MPPT for Different Partial Shading Conditions, LEOPOLDINO, A. L. M., FREITAS, C. M., MONTEIRO, L. F. C.
Issue 2/2022

AbstractPlus






LATEST NEWS

2023-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2022. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.800 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 1.000.

2023-Jun-05
SCOPUS published the CiteScore for 2022, computed by using an improved methodology, counting the citations received in 2019-2022 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2022 is 2.0. For "General Computer Science" we rank #134/233 and for "Electrical and Electronic Engineering" we rank #478/738.

2022-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2021. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.825 (0.722 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.752.

2022-Jun-16
SCOPUS published the CiteScore for 2021, computed by using an improved methodology, counting the citations received in 2018-2021 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2021 is 2.5, the same as for 2020 but better than all our previous results.

2021-Jun-30
Clarivate Analytics published the InCites Journal Citations Report for 2020. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.221 (1.053 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.961.

Read More »


    
 

  4/2015 - 13

An Electronically Tunable Transconductance Amplifier for Use in Auditory Prostheses

FARAGO, P. See more information about FARAGO, P. on SCOPUS See more information about FARAGO, P. on IEEExplore See more information about FARAGO, P. on Web of Science, FARAGO, C. See more information about  FARAGO, C. on SCOPUS See more information about  FARAGO, C. on SCOPUS See more information about FARAGO, C. on Web of Science, OLTEAN, G. See more information about  OLTEAN, G. on SCOPUS See more information about  OLTEAN, G. on SCOPUS See more information about OLTEAN, G. on Web of Science, HINTEA, S. See more information about HINTEA, S. on SCOPUS See more information about HINTEA, S. on SCOPUS See more information about HINTEA, S. on Web of Science
 
View the paper record and citations in View the paper record and citations in Google Scholar
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,464 KB) | Citation | Downloads: 915 | Views: 3,155

Author keywords
analog processing circuits, cochlear implants, low-power electronics, operational transconductance amplifier, programmable circuits

References keywords
cmos(8), circuits(7), amplifier(6), systems(4), signal(4), sarpeshkar(4), processing(4), power(4), farago(4), design(4)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2015-11-30
Volume 15, Issue 4, Year 2015, On page(s): 95 - 100
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2015.04013
Web of Science Accession Number: 000368499800012
SCOPUS ID: 84949945758

Abstract
Quick view
Full text preview
Low-voltage and low-power trends in analog electronics enable novel features in modern bio-medical devices, such as extensive portability, autonomy and even battery-less operation. One specific example is the cochlear implant (CI), which emulates the physiology of hearing to produce auditory sensations via neural stimulation. Besides low-voltage and low-power operation, a key feature in modern CIs is wide-range programmability of the speech processing parameters. This paper proposes an operational transconductance amplifier (OTA) for use in CIs, with wide-range electronic tuning of the transconductance value. The proposed OTA is developed around a cascade of two transconductor stages, making the transconductance dependent on the bias current ratio. A combination of linearization techniques: bulk input, parallel differential pairs and feedback, is used to achieve sufficient linear range for CI speech processing. Wide-range parameter tuning of the speech processing sections is illustrated on a variable gain amplifier, a bandpass Tow-Thomas biquad and an envelope detector. Finally, the complete CI speech processing chain is illustrated. The proposed OTA and its employment in CI analog speech processing are validated on a 350 nm CMOS process.


References | Cited By  «-- Click to see who has cited this paper

[1] L. Magnelli, F. A. Amoroso, F. Crupi, G. Cappuccino, G. Iannaccone, "Design of a 75-nW, 0.5-V subthreshold complementary metal-oxide-semiconductor operational amplifier", International Journal of Circuit Theory and Applications, vol. 42, no. 9, pp. 967-977, Sept. 2014.
[CrossRef] [Web of Science Times Cited 49] [SCOPUS Times Cited 81]


[2] R. Sarpeshkar, Ultra Low Power Bioelectronics: Fundamentals, Biomedical Applications, and Bio-Inspired Systems. Cambridge University Press, 2010.
[CrossRef] [SCOPUS Times Cited 256]


[3] P. C. Loizou, "Mimicking the Human Ear," IEEE Signal Processing Magazine. vol. 15(5), pp. 101-130, Sept. 1998.
[CrossRef] [Web of Science Times Cited 228] [SCOPUS Times Cited 275]


[4] R. Groza and M. Cirlugea, "Current-mode log-domain programmable gain amplifier," in 2014 IEEE International Conference on Automation Quality and Testing Robotics (AQTR), 2014, pp. 75-78.
[CrossRef] [Web of Science Times Cited 4] [SCOPUS Times Cited 4]


[5] S. Hintea, P. Farago, L. Festila, P. Soser, "Reconfigurable Filter Design for Implantable Auditory Prosthesis", Electronics and Electrical Engineering, vol. 99, no.3, pp.7-12, 2010.

[6] S. Hintea, P. Farago, M. N. Roman, G. Oltean, L. Festila, "A Programmable Gain Amplifier for Automated Gain Control in Auditory Prostheses", J. Med. Biol. Eng., vol. 31. no 3, pp 185-192, 2011.
[CrossRef] [Web of Science Times Cited 7] [SCOPUS Times Cited 9]


[7] Baker W, Sarpeshkar R, "Low-power single-loop and dual-loop AGCs for bionic ears", IEEE J. Solid-St. Circ., vol. 41, no. 9, 2006, pp. 1983-1996.
[CrossRef] [Web of Science Times Cited 27] [SCOPUS Times Cited 43]


[8] J. Silva-Martinez, S. Solis-Bustos, J. Salcedo-Suner, R. Rojas-Hernandez, M. Schellenberg, "A CMOS Hearing Aid Device", Analog Integrated Circuits and Signal Processing, Vol. 21, No. 2, pp 163-172, 1999.
[CrossRef] [Web of Science Times Cited 17] [SCOPUS Times Cited 22]


[9] P. Farago, C. Farago, S. Hintea, M. Cirlugea, "An Evolutionary Multi-objective Optimization Approach to Design the Sound Processor of a Hearing Aid," in Proc. IFMBE Proceedings, vol. 44, pp 181-186, 2014.
[CrossRef] [SCOPUS Times Cited 5]


[10] R. Sarpeshkar, R. F. Lyon, C. Mead, "A Low-Power Wide-Linear-Range Transconductance Amplifier," Analog Integrated Circuits and Signal Processing, vol. 13, No. 1-2, pp 123-151, May/June 1997.
[CrossRef] [Web of Science Times Cited 100] [SCOPUS Times Cited 129]


[11] Barrie Gilbert, "The Multi-tanh Principle: A Tutorial Overview", IEEE Journal of Solid-State Circuits, vol. 33, no. 1, pp. 2-17, 1998.
[CrossRef] [Web of Science Times Cited 142] [SCOPUS Times Cited 190]


[12] P. M. Furth, A.G. Andreou, "Linearised differential transconductors in subthreshold CMOS", Electronics Letters, vol. 31, no. 7, pp. 545 - 547, 1995.
[CrossRef] [Web of Science Times Cited 49] [SCOPUS Times Cited 60]


[13] A. Veeravalli, E. Sánchez-Sinencio, J. Silva-Martínez, "A CMOS transconductance amplifier architecture with wide tuning range for very low frequency applications", IEEE Journal of Solid-State Circuits, vol. 37, no.6, pp. 776 - 781, 2002.
[CrossRef] [Web of Science Times Cited 62] [SCOPUS Times Cited 71]


[14] R. G. Bozomitu, V. Cehan, V. Popa, "A New Linearization Technique Using "Multi-sinh" Doublet", Advances in Electrical and Computer Engineering, vol. 9, no. 2, pp. 45-57, 2009.
[CrossRef] [Full Text] [Web of Science Times Cited 8] [SCOPUS Times Cited 8]


[15] P. M. Furth, On the Design of Optimal Continuous-Time Filter Banks in Subthreshold CMOS, PhD dissertation, Baltimore, Maryland, 1996

[16] S. Dwivedi, A. K. Gogoi, "A 0.8 V CMOS OTA and Its Application in Realizing a Neural Recording Amplifier", Journal of Medical and Bioengineering, vol. 4, no. 3, pp. 227-234, 2015.
[CrossRef]


[17] C.-C. Hung, I. Halonen, M. Ismail, V. Porra, "Micropower CMOS Gm-C Filters for Speech Signal Processing," IEEE International Symposium on Circuits and Systems, Hong Kong, 1997, pp. 1972-1975.
[CrossRef]


[18] R. Torrance, T. Viswanathan, J. Hanson, "CMOS voltage to current transducers", IEEE Transactions on Circuits and Systems, vol. 32, no. 11, pp. 1097-1104, 1985.
[CrossRef] [Web of Science Times Cited 106] [SCOPUS Times Cited 145]


[19] R. Sarpeshkar, C. Salthouse, S. Ji-Jon, M. W. Baker, S. M. Zhak, T. K.-T. Lu, L. Turicchia, S. Balster, "An ultra-low-power programmable analog bionic ear processor", IEEE Transactions on Biomedical Engineering, vol. 52, no. 4, pp. 711 - 727, 2005.
[CrossRef] [Web of Science Times Cited 118] [SCOPUS Times Cited 135]


[20] S. Jun, S. J. Ahn, "CMOS precision half-wave rectifying transconductor," in Proceedings of the 1998 IEEE International Symposium on Circuits and Systems, vol. 3, Monterey, 1198, pp. 659 - 662, 1998.
[CrossRef]


[21] P. Loizou, M. Dorman, Z. Tu, "On the number of channels needed to understand speech," Journal of Acoustical Society of America. Vol. 106(4), pp. 2097-2103, 1999.
[CrossRef] [Web of Science Times Cited 151] [SCOPUS Times Cited 178]




References Weight

Web of Science® Citations for all references: 1,068 TCR
SCOPUS® Citations for all references: 1,611 TCR

Web of Science® Average Citations per reference: 49 ACR
SCOPUS® Average Citations per reference: 73 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2024-03-22 07:50 in 111 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2024
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: 


DNS Made Easy