Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 1.221
JCR 5-Year IF: 0.961
SCOPUS CiteScore: 2.5
Issues per year: 4
Current issue: Feb 2022
Next issue: May 2022
Avg review time: 77 days
Avg accept to publ: 48 days
APC: 300 EUR


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

1,894,149 unique visits
717,648 downloads
Since November 1, 2009



Robots online now
DotBot
PetalBot
Googlebot
SemanticScholar


SCOPUS CiteScore

SCOPUS CiteScore


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 22 (2022)
 
     »   Issue 1 / 2022
 
 
 Volume 21 (2021)
 
     »   Issue 4 / 2021
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
 Volume 20 (2020)
 
     »   Issue 4 / 2020
 
     »   Issue 3 / 2020
 
     »   Issue 2 / 2020
 
     »   Issue 1 / 2020
 
 
 Volume 19 (2019)
 
     »   Issue 4 / 2019
 
     »   Issue 3 / 2019
 
     »   Issue 2 / 2019
 
     »   Issue 1 / 2019
 
 
 Volume 18 (2018)
 
     »   Issue 4 / 2018
 
     »   Issue 3 / 2018
 
     »   Issue 2 / 2018
 
     »   Issue 1 / 2018
 
 
  View all issues  








LATEST NEWS

2021-Jun-30
Clarivate Analytics published the InCites Journal Citations Report for 2020. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.221 (1.053 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.961.

2021-Jun-06
SCOPUS published the CiteScore for 2020, computed by using an improved methodology, counting the citations received in 2017-2020 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering in 2020 is 2.5, better than all our previous results.

2021-Apr-15
Release of the v3 version of AECE Journal website. We moved to a new server and implemented the latest cryptographic protocols to assure better compatibility with the most recent browsers. Our website accepts now only TLS 1.2 and TLS 1.3 secure connections.

2020-Jun-29
Clarivate Analytics published the InCites Journal Citations Report for 2019. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.102 (1.023 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.734.

2020-Jun-11
Starting on the 15th of June 2020 we wiil introduce a new policy for reviewers. Reviewers who provide timely and substantial comments will receive a discount voucher entitling them to an APC reduction. Vouchers (worth of 25 EUR or 50 EUR, depending on the review quality) will be assigned to reviewers after the final decision of the reviewed paper is given. Vouchers issued to specific individuals are not transferable.

Read More »


    
 

  4/2015 - 8

Output Choice of a Chaotic Jerk Circuit Used as Transmitter in Data Secure Communications

DATCU, O. See more information about DATCU, O. on SCOPUS See more information about DATCU, O. on IEEExplore See more information about DATCU, O. on Web of Science, STANCIU, M. See more information about  STANCIU, M. on SCOPUS See more information about  STANCIU, M. on SCOPUS See more information about STANCIU, M. on Web of Science, TAULEIGNE, R. See more information about  TAULEIGNE, R. on SCOPUS See more information about  TAULEIGNE, R. on SCOPUS See more information about TAULEIGNE, R. on Web of Science, BURILEANU, C. See more information about  BURILEANU, C. on SCOPUS See more information about  BURILEANU, C. on SCOPUS See more information about BURILEANU, C. on Web of Science, BARBOT, J.-P. See more information about BARBOT, J.-P. on SCOPUS See more information about BARBOT, J.-P. on SCOPUS See more information about BARBOT, J.-P. on Web of Science
 
View the paper record and citations in View the paper record and citations in Google Scholar
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,130 KB) | Citation | Downloads: 611 | Views: 2,516

Author keywords
chaotic communication, nonlinear dynamical systems, observers, signals analysis, sliding mode control

References keywords
chaotic(11), chaos(11), systems(9), cryptography(5), circuits(5), system(4), review(4), physical(4), control(4), barbot(4)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2015-11-30
Volume 15, Issue 4, Year 2015, On page(s): 63 - 68
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2015.04008
Web of Science Accession Number: 000368499800008
SCOPUS ID: 84949960782

Abstract
Quick view
Full text preview
Usually, when analyzing a data series, dynamical systems theory is used to reconstruct the state space of the original system. This work aims to determine which of a chaotic system's states is best suited as output when transmitting secret messages. This is the first step prior to designing an actual communication scheme. As an example, the three states of Sprott's jerk circuit are analyzed in terms of the local observability they ensure for the original dynamics when transmitted as a scalar data series. Results show that its first two states enable accurate estimation of the transmitter's dynamics at the receiving end. However, its third state generates, in some regions of the state space, a non-invertible transformation between the original state space and the one the receiver sees. This is due to the exponential nonlinearities present in this state's derivatives. Given that these nonlinearities remain inaccessible to the receiver, they are neglected in order to allow the partial reconstruction of the dynamics of the transmitter. But, since these nonlinearities are essential for the chaotic behavior, this makes the third state unusable for cryptographic purposes. This analysis may be applied to any bipolar junction transistor or diode based chaotic circuit.


References | Cited By  «-- Click to see who has cited this paper

[1] L. Kocarev, "Chaos-based cryptography: a brief overview", Circuits and Systems Magazine, IEEE 1 (3), 6-21. Inst. for Nonlinear Sci., California Univ., San Diego, La Jolla, 09/2002.
[CrossRef] [SCOPUS Times Cited 662]


[2] G. Jakimoski, L. Kocarev, "Chaos and Cryptography: Block Encryption Ciphers Based on Chaotic Maps", IEEE Transactions On Circuits And Systems—I: Fundamental Theory And Applications, Vol. 48, No. 2, February 2001.
[CrossRef] [Web of Science Times Cited 456] [SCOPUS Times Cited 532]


[3] C. Pellicer-Lostao, R. Lopez-Ruiz, "Notions of Chaotic Cryptography: Sketch of a Chaos Based Cryptosystem", Chapter 12 from Applied Cryptography and Network Security, edited by Jaydip Sen, ISBN 978-953-51-0218-2, Published: March 14, 2012 under CC BY 3.0 license,
[CrossRef]


[4] R. L. Devaney, "An introduction to Chaotic Dynamical Systems", Perseus Books (Second Ed. 1989).

[5] V. Grigoras, C. Grigoras, "A Novel Chaotic System for Random Pulse Generation", Advances in Electrical and Computer Engineering: AECE, Vol. 14, Issue: 2, 2014, ISSN: 1582-7445, eISSN: 1844-7600.
[CrossRef] [Full Text] [Web of Science Times Cited 3] [SCOPUS Times Cited 3]


[6] S. Vlad, S-Gh. Pentiuc, "Searching of Chaotic Elements in Hydrology", Journal of Applied Computer Science & Mathematics, no. 16 (32), 2014, Suceava.

[7] S. Vlad, P. Pascu, N. Morariu, "Chaos Models in Economics", Journal of Computing, Vol. 2, Issue 1, January 2010, ISSN 2151-9617, pp. 79-83.

[8] G. Mahalu, A. Graur, "The Fractal Techniques Applied in Pattern Recognition", The Eighth All-Ukrainian International Conference, Ukrobrez'2006, 28-31 August, 2006, Kyjiv, Ukraine, ISSB/ISBN: ISBN 966-02-4096-1, pp. 35-38, (2006).

[9] S. Pohoata, O. German, A. Graur, "Dual tasking: gait and tremor in Parkinson's disease - acquisition, processing and clustering", Rev. Roum. Sci. Techn. - Électrotechn. et Énerg., 58, 3, p. 324-334, Bucharest, 2013.

[10] G. Alvarez, S. Li, "Some Basic Cryptographic Requirements for Chaos-Based Cryptosystems", International Journal of Bifurcation and Chaos, vol. 16, no. 8, pp. 2129-2151, 2006.
[CrossRef] [Web of Science Times Cited 986] [SCOPUS Times Cited 1175]


[11] G. Jakimoski, L. Kocarev, "Analysis of some recently proposed chaos-based encryption algorithms", Physics Letters A 291 (2001) 381-384, 17 December 2001.
[CrossRef] [Web of Science Times Cited 114] [SCOPUS Times Cited 137]


[12] G. Alvarez, J.- M. Amigo, D. Arroyo, S. Li, "Lessons learnt from the cryptanalysis of chaos-based ciphers", Chapter 8, Chaos-Based Cryptography: Theory, Algorithms and Applications, pp. 257-295, Springer-Verlag GmbH, 2011.
[CrossRef] [SCOPUS Times Cited 62]


[13] J. C. Sprott, "A new chaotic jerk circuit", J. C. IEEE Transactions on Circuits and Systems-II: Express Briefs 58, 240-243, 2011.
[CrossRef] [Web of Science Times Cited 136] [SCOPUS Times Cited 154]


[14] Z. Fu and J. Heidel, "Non-chaotic behaviour in three-dimensional quadratic systems", Nonlinearity 10 (1997) 1289-1303, Printed in the UK, PII: S0951-7715(97)78288-4.
[CrossRef] [Web of Science Times Cited 53] [SCOPUS Times Cited 54]


[15] B. Mumuangsaen, B. Srisuchinwong, J.C. Sprott (2011), "Generalization of the Simplest Autonomous Chaotic System", Physics Letters A, Vol. 375, No. 12, March, pp. 1445-1450.
[CrossRef] [Web of Science Times Cited 56] [SCOPUS Times Cited 61]


[16] A. Wolf, J. B. Swift, H. L. Swinney, J. A. Vastano, "Determining Lyapunov exponents from a time series", Physica D, Vol. 16, pp. 285-317, 1985.
[CrossRef] [Web of Science Times Cited 6593] [SCOPUS Times Cited 6411]


[17] H.-T. Yau, Y.-C. Pu, S. Cimin Li, "Application of a Chaotic Synchronization System to Secure Communication", ISSN 1392 - 124 X Information Technology And Control, 2012, Vol.41, No.3.

[18] D. I. R. Almeida, J. Alvarez, J. G. Barajas, "Robust synchronization of Sprott circuits using sliding mode control", Chaos, Solitons and Fractals Vol. 30(1), 2006, 11-18.
[CrossRef] [Web of Science Times Cited 44] [SCOPUS Times Cited 60]


[19] A. Levant, "Robust exact differentiation via sliding mode technique", Automatica, vol. 34, no. 3, pp. 379-384, 1998.
[CrossRef] [Web of Science Times Cited 1419] [SCOPUS Times Cited 1757]


[20] N. H. Packard, J. P. Crutchfield, J. D. Farmer, R. S. Shaw, "Geometry from a time series", Physical Review Letters, 45 (25), pp.712-716, 1980.
[CrossRef] [Web of Science Times Cited 2862] [SCOPUS Times Cited 3148]


[21] G. Gouesbet, "Reconstruction of Standard and Inverse Vector Fields Equivalent to a Rössler system", Physical Review A, 44 (26), pp. 6264-6280, 1991.
[CrossRef] [Web of Science Times Cited 29] [SCOPUS Times Cited 31]


[22] G. B. Mindlin, H. G. Solari, M. A. Natiello, R. Gilmore, X. J. Hou, "Topological Analysis of Chaotic Time Series Data from the Belousov-Zhabotinski", Journal of Nonlinear Sciences, 1, pp. 147-173, 1991.
[CrossRef] [SCOPUS Times Cited 124]


[23] C. Letellier, L. A. Aguirre and J. Maquet, "How the choice of the observable may influence the analysis of non linear dynamical systems", Communications in Nonlinear Science and Numerical Simulation, Vol. 11 (5), 555-576, 2006.
[CrossRef] [SCOPUS Times Cited 31]


[24] C. Letellier and L. A. Aguirre, "Interplay between synchronization, observability, and dynamics", Physical Review E, Vol. 82, 016204, 2010.
[CrossRef] [Web of Science Times Cited 29] [SCOPUS Times Cited 33]


[25] M. Demazure, "Catastrophes et Bifurcations", Ellipse, Paris, 1989.

[26] R. Hermann and A. Krener, "Nonlinear controllability and observ-ability", IEEE Transactions on Automatic Control, vol. 22, no. 5, pp.728-740, 1977.
[CrossRef] [Web of Science Times Cited 1306] [SCOPUS Times Cited 1611]


[27] A. Trautman, "Remarks on the history of the notion of Lie differentiation", Variations, Geometry and Physics in honour of Demeter Krupka’s sixty-fifth birthday O. Krupkova and D. J. Saunders (Editors) Nova Science Publishers, pp. 297-302, 2008.

[28] M. Frunzete, J.-P. Barbot, and C. Letellier, "Influence of the singular manifold of observable states in reconstructing chaotic attractors", Physical Review E, vol. 86, 2012. PMid:23005843

[29] J.-P. Barbot, D. Boutat, and T. Floquet, "An observation algorithm for nonlinear systems with unknown inputs", Automatica, vol. 45, no. 8, pp.1970-1974, 2009.
[CrossRef] [Web of Science Times Cited 39] [SCOPUS Times Cited 52]


[30] H. Hamiche, M. Ghanes, J. P. Barbot, K. Kemih, S. Djennoune, "Hybrid dynamical systems for private digital communication", International Journal of Modelling Identification and Control 01/2013; 20(2):99-113.
[CrossRef] [SCOPUS Times Cited 16]


[31] T. Boukhobza and J-P Barbot, "High Order Sliding Modes Observer", Proceeding of the 37th IEEE CDC, Tampa USA, pp. 1912-1917, 1998. [Online]
[CrossRef]


[32] R. Tauleigne, O. Datcu, and M. Stanciu, "Thwarting cryptanalytic attacks based on the correlation function", The 10th International Conference on Communications (COMM 2014), Bucharest, May 2014.
[CrossRef] [SCOPUS Times Cited 1]


[33] M. P. Kennedy, "Chaos in the Colpitts oscillator", IEEE Transactions On Circuits and Systems - 1 CAS, 41 (27):771-774, 1994.
[CrossRef] [Web of Science Times Cited 288] [SCOPUS Times Cited 334]




References Weight

Web of Science® Citations for all references: 14,413 TCR
SCOPUS® Citations for all references: 16,449 TCR

Web of Science® Average Citations per reference: 424 ACR
SCOPUS® Average Citations per reference: 484 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2022-05-21 23:22 in 148 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2022
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: