Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.825
JCR 5-Year IF: 0.752
SCOPUS CiteScore: 2.5
Issues per year: 4
Current issue: May 2022
Next issue: Aug 2022
Avg review time: 78 days
Avg accept to publ: 48 days
APC: 300 EUR


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

1,921,569 unique visits
743,456 downloads
Since November 1, 2009



Robots online now
SemanticScholar
PetalBot
Googlebot


SCOPUS CiteScore

SCOPUS CiteScore


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 22 (2022)
 
     »   Issue 2 / 2022
 
     »   Issue 1 / 2022
 
 
 Volume 21 (2021)
 
     »   Issue 4 / 2021
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
 Volume 20 (2020)
 
     »   Issue 4 / 2020
 
     »   Issue 3 / 2020
 
     »   Issue 2 / 2020
 
     »   Issue 1 / 2020
 
 
 Volume 19 (2019)
 
     »   Issue 4 / 2019
 
     »   Issue 3 / 2019
 
     »   Issue 2 / 2019
 
     »   Issue 1 / 2019
 
 
 Volume 18 (2018)
 
     »   Issue 4 / 2018
 
     »   Issue 3 / 2018
 
     »   Issue 2 / 2018
 
     »   Issue 1 / 2018
 
 
  View all issues  








LATEST NEWS

2022-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2021. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.825 (0.722 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.752.

2022-Jun-16
SCOPUS published the CiteScore for 2021, computed by using an improved methodology, counting the citations received in 2018-2021 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering in 2021 is 2.5, the same as for 2020 but better than all our previous results.

2021-Jun-30
Clarivate Analytics published the InCites Journal Citations Report for 2020. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.221 (1.053 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.961.

2021-Jun-06
SCOPUS published the CiteScore for 2020, computed by using an improved methodology, counting the citations received in 2017-2020 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering in 2020 is 2.5, better than all our previous results.

2021-Apr-15
Release of the v3 version of AECE Journal website. We moved to a new server and implemented the latest cryptographic protocols to assure better compatibility with the most recent browsers. Our website accepts now only TLS 1.2 and TLS 1.3 secure connections.

Read More »


    
 

  2/2016 - 11

Quantitative Analysis of Memristance Defined Exponential Model for Multi-bits Titanium Dioxide Memristor Memory Cell

DAOUD, A. A. D. See more information about DAOUD, A. A. D. on SCOPUS See more information about DAOUD, A. A. D. on IEEExplore See more information about DAOUD, A. A. D. on Web of Science, DESSOUKI, A. A. S. See more information about  DESSOUKI, A. A. S. on SCOPUS See more information about  DESSOUKI, A. A. S. on SCOPUS See more information about DESSOUKI, A. A. S. on Web of Science, ABUELENIN, S. M. See more information about ABUELENIN, S. M. on SCOPUS See more information about ABUELENIN, S. M. on SCOPUS See more information about ABUELENIN, S. M. on Web of Science
 
View the paper record and citations in View the paper record and citations in Google Scholar
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,465 KB) | Citation | Downloads: 559 | Views: 2,036

Author keywords
analytical models, memristors, nonvolatile memory, SPICE, tunneling

References keywords
memristor(20), circuits(11), systems(9), model(6), devices(5), spice(4), physics(4), modeling(4), memristive(4), device(4)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2016-05-31
Volume 16, Issue 2, Year 2016, On page(s): 75 - 84
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2016.02011
Web of Science Accession Number: 000376996100011
SCOPUS ID: 84974855611

Abstract
Quick view
Full text preview
The ability to store multiple bits in a single memristor based memory cell is a key feature for high-capacity memory packages. Studying multi-bit memristor circuits requires high accuracy in modelling the memristance change. A memristor model based on a novel definition of memristance is proposed. A design of a single memristor memory cell using the proposed model for the platinum electrodes titanium dioxide memristor is illustrated. A specific voltage pulse is used with varying its parameters (amplitude or pulse width) to store different number of states in a single memristor. New state variation parameters associated with the utilized model are provided and their effects on write and read processes of memristive multi-states are analysed. PSPICE simulations are also held, and they show a good agreement with the data obtained from the analysis.


References | Cited By  «-- Click to see who has cited this paper

[1] L. O. Chua, "Memristor-the missing circuit element," Circuit Theory, IEEE Transactions on, vol. 18, pp. 507-519, 1971.
[CrossRef] [SCOPUS Times Cited 6034]


[2] Y. Urata, Y. Takahashi, T. Sekine, and N. A. Nayan, "A low-power sense amplifier for adiabatic memory using memristor," in Circuits and Systems (APCCAS), 2012 IEEE Asia Pacific Conference on, 2012, pp. 112-115.
[CrossRef] [SCOPUS Times Cited 3]


[3] L. Zheng, S. Shin, and S.-M. S. Kang, "Memristor-based ternary content addressable memory (mTCAM) for data-intensive computing," Semiconductor Science and Technology, vol. 29, p. 104010, 2014.
[CrossRef] [Web of Science Times Cited 16] [SCOPUS Times Cited 16]


[4] M. S. Qureshi, M. Pickett, F. Miao, and J. P. Strachan, "CMOS interface circuits for reading and writing memristor crossbar array," in Circuits and systems (ISCAS), 2011 IEEE international symposium on, 2011, pp. 2954-2957.
[CrossRef] [SCOPUS Times Cited 44]


[5] A. Emara, M. Ghoneima, and M. El-Dessouky, "Differential 1T2M memristor memory cell for single/multi-bit RRAM modules," in Computer Science and Electronic Engineering Conference (CEEC), 2014 6th, 2014, pp. 69-72.
[CrossRef] [SCOPUS Times Cited 17]


[6] D. Fey, "Using the multi-bit feature of memristors for register files in signed-digit arithmetic units," Semiconductor Science and Technology, vol. 29, p. 104008, 2014.
[CrossRef] [Web of Science Times Cited 23] [SCOPUS Times Cited 23]


[7] S. Smaili and Y. Massoud, "Differential pair sense amplifier for a robust reading scheme for memristor-based memories," in Circuits and Systems (ISCAS), 2013 IEEE International Symposium on, 2013, pp. 1676-1679.
[CrossRef] [SCOPUS Times Cited 4]


[8] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, "The missing memristor found," nature, vol. 453, pp. 80-83, 2008.
[CrossRef] [Web of Science Times Cited 6778] [SCOPUS Times Cited 7460]


[9] R. E. Pino, J. W. Bohl, N. McDonald, B. Wysocki, P. Rozwood, K. A. Campbell, et al., "Compact method for modeling and simulation of memristor devices: ion conductor chalcogenide-based memristor devices," in Nanoscale Architectures (NANOARCH), 2010 IEEE/ACM International Symposium on, 2010, pp. 1-4.
[CrossRef] [SCOPUS Times Cited 63]


[10] C. Yakopcic, T. M. Taha, G. Subramanyam, R. E. Pino, and S. Rogers, "A memristor device model," IEEE electron device letters, vol. 32, pp. 1436-1438, 2011.
[CrossRef] [Web of Science Times Cited 183] [SCOPUS Times Cited 214]


[11] Á. Rák and G. Cserey, "Macromodeling of the memristor in SPICE," Computer-aided design of integrated circuits and systems, IEEE Transactions on, vol. 29, pp. 632-636, 2010.
[CrossRef] [Web of Science Times Cited 189] [SCOPUS Times Cited 219]


[12] S. Kvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser, "TEAM: threshold adaptive memristor model," Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 60, pp. 211-221, 2013.
[CrossRef] [Web of Science Times Cited 418] [SCOPUS Times Cited 498]


[13] Y. N. Joglekar and S. J. Wolf, "The elusive memristor: properties of basic electrical circuits," European Journal of Physics, vol. 30, p. 661, 2009.
[CrossRef] [Web of Science Times Cited 534] [SCOPUS Times Cited 639]


[14] F. Corinto and A. Ascoli, "A boundary condition-based approach to the modeling of memristor nanostructures," Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 59, pp. 2713-2726, 2012.
[CrossRef] [Web of Science Times Cited 102] [SCOPUS Times Cited 129]


[15] Z. Biolek, D. Biolek, and V. Biolkova, "SPICE model of memristor with nonlinear dopant drift," Radioengineering, vol. 18, pp. 210-214, 2009.

[16] H. Abdalla and M. D. Pickett, "SPICE modeling of memristors," in Circuits and Systems (ISCAS), 2011 IEEE International Symposium on, 2011, pp. 1832-1835.
[CrossRef] [SCOPUS Times Cited 197]


[17] T. Xiao-Bo and X. Hui, "Characteristics of titanium oxide memristor with coexistence of dopant drift and a tunnel barrier," Chinese Physics B, vol. 23, p. 068401, 2014.
[CrossRef] [Web of Science Times Cited 6] [SCOPUS Times Cited 9]


[18] T. Prodromakis, B. P. Peh, C. Papavassiliou, and C. Toumazou, "A versatile memristor model with nonlinear dopant kinetics," Electron Devices, IEEE Transactions on, vol. 58, pp. 3099-3105, 2011.
[CrossRef] [Web of Science Times Cited 247] [SCOPUS Times Cited 308]


[19] A. Ascoli, F. Corinto, V. Senger, and R. Tetzlaff, "Memristor model comparison," Circuits and Systems Magazine, IEEE, vol. 13, pp. 89-105, 2013. .
[CrossRef] [Web of Science Times Cited 113] [SCOPUS Times Cited 129]


[20] S. Shin, K. Kim, and S. Kang, "Memristor applications for programmable analog ICs," Nanotechnology, IEEE Transactions on, vol. 10, pp. 266-274, 2011.
[CrossRef] [Web of Science Times Cited 246] [SCOPUS Times Cited 292]


[21] C. Yakopcic, T. M. Taha, G. Subramanyam, and R. E. Pino, "Generalized memristive device SPICE model and its application in circuit design," Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 32, pp. 1201-1214, 2013.
[CrossRef] [Web of Science Times Cited 140] [SCOPUS Times Cited 158]


[22] M. Laiho, E. Lehtonen, A. Russell, and P. Dudek, "Memristive synapses are becoming reality," The Neuromorphic Engineer, 2010.
[CrossRef]


[23] T. Chang, S.-H. Jo, K.-H. Kim, P. Sheridan, S. Gaba, and W. Lu, "Synaptic behaviors and modeling of a metal oxide memristive device," Applied physics A, vol. 102, pp. 857-863, 2011.
[CrossRef] [Web of Science Times Cited 266] [SCOPUS Times Cited 261]


[24] M. D. Pickett, D. B. Strukov, J. L. Borghetti, J. J. Yang, G. S. Snider, D. R. Stewart, et al., "Switching dynamics in titanium dioxide memristive devices," Journal of Applied Physics, vol. 106, p. 074508, 2009.
[CrossRef] [Web of Science Times Cited 417] [SCOPUS Times Cited 558]


[25] C. Yakopcic, "Memristor devices: Fabrication, Characterization, Simulation, and Circuit Design", pp. 56-57, University of Dayton, August, 2011.

References Weight

Web of Science® Citations for all references: 9,678 TCR
SCOPUS® Citations for all references: 17,275 TCR

Web of Science® Average Citations per reference: 387 ACR
SCOPUS® Average Citations per reference: 691 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2022-06-21 15:14 in 137 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2022
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: