Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.825
JCR 5-Year IF: 0.752
SCOPUS CiteScore: 2.5
Issues per year: 4
Current issue: Aug 2022
Next issue: Nov 2022
Avg review time: 77 days
Avg accept to publ: 48 days
APC: 300 EUR


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,004,606 unique visits
805,553 downloads
Since November 1, 2009



Robots online now
Googlebot
YandexBot


SCOPUS CiteScore

SCOPUS CiteScore


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 22 (2022)
 
     »   Issue 3 / 2022
 
     »   Issue 2 / 2022
 
     »   Issue 1 / 2022
 
 
 Volume 21 (2021)
 
     »   Issue 4 / 2021
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
 Volume 20 (2020)
 
     »   Issue 4 / 2020
 
     »   Issue 3 / 2020
 
     »   Issue 2 / 2020
 
     »   Issue 1 / 2020
 
 
 Volume 19 (2019)
 
     »   Issue 4 / 2019
 
     »   Issue 3 / 2019
 
     »   Issue 2 / 2019
 
     »   Issue 1 / 2019
 
 
  View all issues  








LATEST NEWS

2022-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2021. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.825 (0.722 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.752.

2022-Jun-16
SCOPUS published the CiteScore for 2021, computed by using an improved methodology, counting the citations received in 2018-2021 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering in 2021 is 2.5, the same as for 2020 but better than all our previous results.

2021-Jun-30
Clarivate Analytics published the InCites Journal Citations Report for 2020. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.221 (1.053 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.961.

2021-Jun-06
SCOPUS published the CiteScore for 2020, computed by using an improved methodology, counting the citations received in 2017-2020 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering in 2020 is 2.5, better than all our previous results.

2021-Apr-15
Release of the v3 version of AECE Journal website. We moved to a new server and implemented the latest cryptographic protocols to assure better compatibility with the most recent browsers. Our website accepts now only TLS 1.2 and TLS 1.3 secure connections.

Read More »


    
 

  4/2016 - 10

 HIGH-IMPACT PAPER 

Broken Bar Fault Detection in IM Operating Under No-Load Condition

RELJIC, D. See more information about RELJIC, D. on SCOPUS See more information about RELJIC, D. on IEEExplore See more information about RELJIC, D. on Web of Science, JERKAN, D. See more information about  JERKAN, D. on SCOPUS See more information about  JERKAN, D. on SCOPUS See more information about JERKAN, D. on Web of Science, MARCETIC, D. See more information about  MARCETIC, D. on SCOPUS See more information about  MARCETIC, D. on SCOPUS See more information about MARCETIC, D. on Web of Science, OROS, D. See more information about OROS, D. on SCOPUS See more information about OROS, D. on SCOPUS See more information about OROS, D. on Web of Science
 
View the paper record and citations in View the paper record and citations in Google Scholar
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,842 KB) | Citation | Downloads: 1,160 | Views: 958

Author keywords
fault detection, current measurement, fast Fourier transform, induction motor, spectral analysis

References keywords
induction(17), rotor(14), motors(12), analysis(10), diagnosis(9), industry(7), detection(7), machines(6), fault(6), energy(6)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2016-11-30
Volume 16, Issue 4, Year 2016, On page(s): 63 - 70
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2016.04010
Web of Science Accession Number: 000390675900010
SCOPUS ID: 85007559647

Abstract
Quick view
Full text preview
This paper presents a novel method for broken rotor bar detection in a squirrel-cage induction motor (IM). The proposed method applies a single-phase AC voltage as a test signal on motor terminals, resulting in a stator backward-rotating magnetic field. The field ultimately causes additional current components in the stator windings whose magnitudes depend on the broken bar fault severity, even if the motor is unloaded. This allows robust broken bar fault detection based only on standard motor current signature analysis (MCSA) technique. The proposed fault detection method is at first verified via simulations, using an IM model based on finite element analysis (FEA) and multiple coupled circuit approach (MCCA). The subsequent experimental investigations have shown good agreement with both theoretical predictions and simulation results.


References | Cited By  «-- Click to see who has cited this paper

[1] A. H. Bonnett, "Root Cause AC Motor Failure Analysis with a Focus on Shaft Failures," IEEE Transactions on Industry Applications, vol. 36, no. 5, pp. 1435-1448, Sep/Oct 2000.
[CrossRef] [Web of Science Times Cited 71] [SCOPUS Times Cited 93]


[2] A. H. Bonnett, "Root cause failure analysis for AC Induction Motors in the petroleum and chemical industry," in Proc. 57th Annu. Petroleum and Chemical Industry Conference, San Antonio, 2010, pp. 1-13.
[CrossRef] [SCOPUS Times Cited 14]


[3] O. V. Thorsen, M. Dalva, "A survey of Faults on Induction Motors in Offshore Oil Industry, Petrochemical Industry, Gas Terminals, and Oil Refineries," IEEE Transactions on Industry Applications, vol. 31, no. 5, pp. 1186-1196, Sep./Oct. 1995.
[CrossRef] [Web of Science Times Cited 228] [SCOPUS Times Cited 321]


[4] G. B. Kliman, R. A. Koegl, J. Stein, R. D. Endicott, and M. W. Madden, "Noninvasive detection of broken rotor bars in operating induction motors," IEEE Trans. Energy Convers., vol. 3, no. 4, pp. 873-879, Dec. 1988.
[CrossRef] [Web of Science Times Cited 332] [SCOPUS Times Cited 423]


[5] M. E. H. Benbouzid, "A review of induction motors signature analysis as a medium for faults detection," IEEE Transactions on Industrial Electronics, vol. 47 no. 5, pp. 984-993, Oct. 2000.
[CrossRef] [Web of Science Times Cited 919] [SCOPUS Times Cited 1263]


[6] S. Nandi, H. A. Toliyat, and X. Li, "Condition monitoring and fault diagnosis of electrical motors-a review," IEEE Trans. Energy Convers., vol. 20, no. 4, pp. 719-729, Dec. 2005.
[CrossRef] [Web of Science Times Cited 1405] [SCOPUS Times Cited 1734]


[7] L. Mihet-Popa, "Current Signature Analysis as Diagnosis Media for Incipient Fault Detection," Advances in Electrical and Computer Engineering, vol. 7, no. 2, pp. 11-15, November 2007.
[CrossRef] [Full Text] [Web of Science Times Cited 7]


[8] G. Didier, E. Ternisien, O. Caspary, and H. Razik, "A new approach to detect broken rotor bars in induction machines by current spectrum analysis," Mech. Syst. Signal Process., vol. 21, no. 2, pp. 1127-1142, Feb. 2007.
[CrossRef] [Web of Science Times Cited 69] [SCOPUS Times Cited 94]


[9] K. N. Gyftakis and J. C. Kappatou, "The Zero-Sequence Current as a Generalized Diagnostic Mean in Delta-Connected Three-Phase Induction Motors," IEEE Trans. Energy Convers., vol. 29, no. 1, pp. 138-148, Mar. 2014.
[CrossRef] [Web of Science Times Cited 59] [SCOPUS Times Cited 61]


[10] S. Shin, J. Kim, S. B. Lee, C. Lim, and E. J. Wiedenbrug, "Evaluation of the Influence of Rotor Magnetic Anisotropy on Condition Monitoring of Two-Pole Induction Motors," IEEE Transactions on Industry Applications , vol. 51, no. 4, pp. 2896-2904, July 2015.
[CrossRef] [Web of Science Times Cited 28] [SCOPUS Times Cited 31]


[11] A. Ceban, R. Pusca, and R. Romary, "Study of Rotor Faults in Induction Motors Using External Magnetic Field Analysis," IEEE Trans. Ind. Electron., vol. 59, no. 5, pp. 2082-2093, May 2012.
[CrossRef] [Web of Science Times Cited 174] [SCOPUS Times Cited 200]


[12] S. W. Clark and D. Stevens, "Induction motor rotor bar damage evaluation with magnetic field analysis," in IEEE 10th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), Guarda, 2015, pp. 39-43.
[CrossRef] [SCOPUS Times Cited 5]


[13] V. Climente-Alarcon, J. A. Antonino-Daviu, F. VedreƱo-Santos, and R. Puche-Panadero, "Vibration Transient Detection of Broken Rotor Bars by PSH Sidebands," IEEE Trans. Ind. Appl., vol. 49, no. 6, pp. 2576-2582, Nov. 2013.
[CrossRef] [Web of Science Times Cited 48] [SCOPUS Times Cited 53]


[14] S. Choi, E. Pazouki, J. Baek, and H. R. Bahrami, "Iterative Condition Monitoring and Fault Diagnosis Scheme of Electric Motor for Harsh Industrial Application," IEEE Trans. Ind. Electron., vol. 62, no. 3, pp. 1760-1769, Mar. 2015.
[CrossRef] [Web of Science Times Cited 54] [SCOPUS Times Cited 61]


[15] S. Choi, B. Akin, M. M. Rahimian, and H. A. Toliyat, "Implementation of a Fault-Diagnosis Algorithm for Induction Machines Based on Advanced Digital-Signal-Processing Techniques," IEEE Trans. Ind. Electron., vol. 58, no. 3, pp. 937-948, Mar. 2011.
[CrossRef] [Web of Science Times Cited 75] [SCOPUS Times Cited 89]


[16] M. Riera-Guasp, J. A. Antonino-Daviu, and G.-A. Capolino, "Advances in Electrical Machine, Power Electronic, and Drive Condition Monitoring and Fault Detection: State of the Art," IEEE Trans. Ind. Electron., vol. 62, no. 3, pp. 1746-1759, March 2015.
[CrossRef] [Web of Science Times Cited 344] [SCOPUS Times Cited 396]


[17] R. Puche-Panadero, M. Pineda-Sanchez, M. Riera-Guasp, J. Roger-Folch, E. Hurtado-Perez, J. Perez-Cruz, "Improved Resolution of the MCSA Method Via Hilbert Transform, Enabling the Diagnosis of Rotor Asymmetries at Very Low Slip," IEEE Transactions on Energy Conversion, vol. 24, no. 1, pp. 52-59, March 2009.
[CrossRef] [Web of Science Times Cited 195] [SCOPUS Times Cited 228]


[18] W. T. Thomson and M. Fenger, "Current signature analysis to detect induction motor faults," IEEE Ind. Appl. Mag., vol. 7, no. 4, pp. 26-34, Jul./Aug. 2001.
[CrossRef] [Web of Science Times Cited 641] [SCOPUS Times Cited 906]


[19] M. C. Ian and R. Wendell, "Using current signature analysis technology to reliably detect cage winding defects in squirrel-cage induction motors," IEEE Trans. Ind. Appl., vol. 43, no. 2, pp. 422-428, Mar./Apr. 2007.
[CrossRef] [Web of Science Times Cited 74] [SCOPUS Times Cited 85]


[20] A. Sapena-Bano, M. Pineda-Sanchez, R. Puche-Panadero, J. Martinez-Roman, and Z. Kanovic, "Low-Cost Diagnosis of Rotor Asymmetries in Induction Machines Working at a Very Low Slip Using the Reduced Envelope of the Stator Current," IEEE Trans. Energy Convers., vol. 30, no. 4, pp. 1409-1419, Dec. 2015.
[CrossRef] [Web of Science Times Cited 35] [SCOPUS Times Cited 44]


[21] M. Riera-Guasp, J. A. Antonino-Daviu, J. Roger-Folch, and M. P. M. Palomares, "The Use of the Wavelet Approximation Signal as a Tool for the Diagnosis of Rotor Bar Failures," IEEE Trans. Ind. Appl., vol. 44, no. 3, pp. 716-726, May 2008.
[CrossRef] [Web of Science Times Cited 98] [SCOPUS Times Cited 120]


[22] A. Bouzida, O. Touhami, R. Ibtiouen, A. Belouchrani, M. Fadel, and A. Rezzoug, "Fault Diagnosis in Industrial Induction Machines Through Discrete Wavelet Transform," IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 4385-4395, September 2011.
[CrossRef] [Web of Science Times Cited 206] [SCOPUS Times Cited 256]


[23] P. Karvelis, G. Georgoulas, I. P. Tsoumas, J. A. Antonino-Daviu, V. Climente-Alarcon, and C. D. Stylios, "A Symbolic Representation Approach for the Diagnosis of Broken Rotor Bars in Induction Motors," IEEE Trans. Ind. Inform., vol. 11, no. 5, pp. 1028-1037, Oct. 2015.
[CrossRef] [Web of Science Times Cited 46] [SCOPUS Times Cited 51]


[24] H. Douglas, P. Pillay, and A. K. Ziarani, "Broken Rotor Bar Detection in Induction Machines With Transient Operating Speeds," IEEE Transactions on Energy Conversion, vol. 20, no. 1, pp.135-141, March 2005.
[CrossRef] [Web of Science Times Cited 116] [SCOPUS Times Cited 143]


[25] S. Williamson, A. C. Smith, "Steady-state analysis of 3-phase cage motors with rotor-bar and end-ring faults," IEE Proceedings B - Electric Power Applications, vol. 129, no. 3, pp. 93-100, May 1982.
[CrossRef] [Web of Science Times Cited 56] [SCOPUS Times Cited 138]


[26] C. Hargis, B.G. Gaydon, and K. Kamish, "The detection of rotor defects in induction motors," in Proc. Institute Electrical Engineering EMDA Conf, London, 1982, pp. 216-220.

[27] A. E. Fitzgerald, C. Kingsley Jr., S. D. Umans. Electric Machinery. McGraw-Hill, pp. 173-244, 2005.

[28] D. Jerkan, D. Marcetic, "Advanced model of IM including rotor slot harmonics," COMPEL - Int. J. Comput. Math. Electr. Electron. Eng., vol. 34, no. 1, pp. 261-278, Jan. 2015.
[CrossRef] [Web of Science Times Cited 5] [SCOPUS Times Cited 5]




References Weight

Web of Science® Citations for all references: 5,285 TCR
SCOPUS® Citations for all references: 6,814 TCR

Web of Science® Average Citations per reference: 182 ACR
SCOPUS® Average Citations per reference: 235 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2022-11-24 04:03 in 307 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2022
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: