Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.825
JCR 5-Year IF: 0.752
SCOPUS CiteScore: 2.5
Issues per year: 4
Current issue: Feb 2023
Next issue: May 2023
Avg review time: 74 days
Avg accept to publ: 48 days
APC: 300 EUR


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,086,271 unique visits
837,687 downloads
Since November 1, 2009



Robots online now
Googlebot


SCOPUS CiteScore

SCOPUS CiteScore


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 23 (2023)
 
     »   Issue 1 / 2023
 
 
 Volume 22 (2022)
 
     »   Issue 4 / 2022
 
     »   Issue 3 / 2022
 
     »   Issue 2 / 2022
 
     »   Issue 1 / 2022
 
 
 Volume 21 (2021)
 
     »   Issue 4 / 2021
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
 Volume 20 (2020)
 
     »   Issue 4 / 2020
 
     »   Issue 3 / 2020
 
     »   Issue 2 / 2020
 
     »   Issue 1 / 2020
 
 
  View all issues  




SAMPLE ARTICLES

Adaptive Interval Type-2 Fuzzy Controller Based Direct Torque Control of Permanent Magnet Synchronous Motor, HENINI, N., TLEMCANI, A., BARKAT, S.
Issue 2/2021

AbstractPlus

Diagnosis of Alzheimer's Disease from Brain Magnetic Resonance Imaging Images using Deep Learning Algorithms, SUGANTHE, R. C., LATHA, R. S., GEETHA, M., SREEKANTH, G. R.
Issue 3/2020

AbstractPlus

Deep Learning Based DNS Tunneling Detection and Blocking System, ALTUNCU, M. A., GULAGIZ, F. K., OZCAN, H., BAYIR, O. F., GEZGIN, A., NIYAZOV, A., CAVUSLU, M. A., SAHIN, S.
Issue 3/2021

AbstractPlus

De-ghosting in High Dynamic Range Imaging Based on Intensity Scaling Cue, SHIM, S.-O, ALHARBI, S., KHAN, I. R., AZIZ, W.
Issue 3/2020

AbstractPlus

Classification of Low-Resolution Flying Objects in Videos Using the Machine Learning Approach, STANCIC, I., VEIC, L., MUSIC, J., GRUJIC, T.
Issue 2/2022

AbstractPlus

Two Types of Fuzzy Logic Controllers for the Speed Control of the Doubly-Fed Induction Machine, SAIDI, A., NACERI, F., YOUB, L., CERNAT, M., GUASCH PESQUER, L.
Issue 3/2020

AbstractPlus




LATEST NEWS

2022-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2021. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.825 (0.722 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.752.

2022-Jun-16
SCOPUS published the CiteScore for 2021, computed by using an improved methodology, counting the citations received in 2018-2021 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering in 2021 is 2.5, the same as for 2020 but better than all our previous results.

2021-Jun-30
Clarivate Analytics published the InCites Journal Citations Report for 2020. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.221 (1.053 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.961.

2021-Jun-06
SCOPUS published the CiteScore for 2020, computed by using an improved methodology, counting the citations received in 2017-2020 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering in 2020 is 2.5, better than all our previous results.

2021-Apr-15
Release of the v3 version of AECE Journal website. We moved to a new server and implemented the latest cryptographic protocols to assure better compatibility with the most recent browsers. Our website accepts now only TLS 1.2 and TLS 1.3 secure connections.

Read More »


    
 

  1/2017 - 1
View TOC | « Previous Article | Next Article »

 HIGH-IMPACT PAPER 

Wind Power Prediction Based on LS-SVM Model with Error Correction

ZHANG, Y. See more information about ZHANG, Y. on SCOPUS See more information about ZHANG, Y. on IEEExplore See more information about ZHANG, Y. on Web of Science, WANG, P. See more information about  WANG, P. on SCOPUS See more information about  WANG, P. on SCOPUS See more information about WANG, P. on Web of Science, NI, T. See more information about  NI, T. on SCOPUS See more information about  NI, T. on SCOPUS See more information about NI, T. on Web of Science, CHENG, P. See more information about  CHENG, P. on SCOPUS See more information about  CHENG, P. on SCOPUS See more information about CHENG, P. on Web of Science, LEI, S. See more information about LEI, S. on SCOPUS See more information about LEI, S. on SCOPUS See more information about LEI, S. on Web of Science
 
View the paper record and citations in View the paper record and citations in Google Scholar
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,180 KB) | Citation | Downloads: 1,829 | Views: 3,547

Author keywords
computer errors, error correction, support vector machines, power engineering computing, wind energy generation

References keywords
wind(19), energy(15), prediction(11), speed(10), power(7), renewable(6), jrenene(6), term(5), short(5), forecasting(5)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2017-02-28
Volume 17, Issue 1, Year 2017, On page(s): 3 - 8
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2017.01001
Web of Science Accession Number: 000396335900001
SCOPUS ID: 85014266751

Abstract
Quick view
Full text preview
As conventional energy sources are non-renewable, the world's major countries are investing heavily in renewable energy research. Wind power represents the development trend of future energy, but the intermittent and volatility of wind energy are the main reasons that leads to the poor accuracy of wind power prediction. However, by analyzing the error level at different time points, it can be found that the errors of adjacent time are often approximately the same, the least square support vector machine (LS-SVM) model with error correction is used to predict the wind power in this paper. According to the simulation of wind power data of two wind farms, the proposed method can effectively improve the prediction accuracy of wind power, and the error distribution is concentrated almost without deviation. The improved method proposed in this paper takes into account the error correction process of the model, which improved the prediction accuracy of the traditional model (RBF, Elman, LS-SVM). Compared with the single LS-SVM prediction model in this paper, the mean absolute error of the proposed method had decreased by 52 percent. The research work in this paper will be helpful to the reasonable arrangement of dispatching operation plan, the normal operation of the wind farm and the large-scale development as well as fully utilization of renewable energy resources.


References | Cited By  «-- Click to see who has cited this paper

[1] A. Y. Sultan, C. Yassine, A. B. Abdullah, G. Adel, "Nested ensemble NWP approach for wind energy assessment," Renewable Energy, Vol. 37, pp. 150-160, Jan. 2012.
[CrossRef] [Web of Science Times Cited 43] [SCOPUS Times Cited 47]


[2] V. Prema, K. U. Rao, "Development of statistical time series models for solar power prediction," Renewable Energy, Vol. 83, pp. 100-109, Nov. 2015.
[CrossRef] [Web of Science Times Cited 63] [SCOPUS Times Cited 90]


[3] H. R. Zhao, S. Guo, "An optimized gray modal for annual power load forecasting," Energy, Vol. 107, pp. 272-286, Jul. 2016.
[CrossRef] [Web of Science Times Cited 138] [SCOPUS Times Cited 154]


[4] C. D. Zuluaga, M. A. Alvarez, E. Giraldo, "Short-term wind speed prediction based on robust Kalman filtering: An experimental comparison," Applied Energy, Vol. 156, pp. 321-330, Oct. 2015.
[CrossRef] [Web of Science Times Cited 116] [SCOPUS Times Cited 130]


[5] H. P. Liu, E. Erdem, J. Shi, "Comprehensive evaluation of ARMA-GARCH (-M) approaches for modeling the mean and volatility of wind speed," Applied Energy, Vol. 88, pp. 724-732, Mar. 2011.
[CrossRef] [Web of Science Times Cited 149] [SCOPUS Times Cited 167]


[6] C. Fan, S. Liu, "Wind Speed Forecasting Method: Gray Related Weighted Combination with Revised Parameter," Energy Procedia, Vol. 5, pp. 550-554, Apr. 2011.
[CrossRef] [Web of Science Times Cited 9] [SCOPUS Times Cited 10]


[7] P. Ramasamy, S. S. Chandel, A. K. Yadav, "Wind speed prediction in the mountainous region of India using an artificial neural network model," Renewable Energy, Vol. 80, pp. 338-347, Aug. 2015.
[CrossRef] [Web of Science Times Cited 101] [SCOPUS Times Cited 124]


[8] H. Chitsaz, N. Amjady, H. Zareipour, "Wind power forecast using wavelet neural network trained by improved Clonal selection algorithm," Energy Conversion and Management, Vol. 89, pp. 588-598, Jan. 2015.
[CrossRef] [Web of Science Times Cited 170] [SCOPUS Times Cited 207]


[9] M. A. Mohandes, T. O. Halawani, S. Rehman, A. A. Hussain, "Support vector machines for wind speed prediction," Renewable Energy, Vol. 29, no. 6, pp. 939-947, May. 2004.
[CrossRef] [Web of Science Times Cited 506] [SCOPUS Times Cited 630]


[10] K. G. Sheela, S. N. Deepa, "Neural network based hybrid computing model for wind speed prediction," Neurocomputing, Vol. 122, pp. 425-429, Dec. 2013.
[CrossRef] [Web of Science Times Cited 64] [SCOPUS Times Cited 80]


[11] K. Chen, J. Yu, "Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach," Applied Energy, Vol. 113, pp. 690-705, Jan. 2014.
[CrossRef] [Web of Science Times Cited 211] [SCOPUS Times Cited 243]


[12] Y. G. Zhang, J. Y. Yang, K. C. Wang, Z. P. Wang, Y. D. Wang, "Improved wind prediction based on the Lorenz system." Renewable Energy, Vol. 81, pp. 219-226, Sep. 2015.
[CrossRef] [Web of Science Times Cited 18] [SCOPUS Times Cited 22]


[13] Y. G. Zhang, J. Y. Yang, K. C. Wang, Y. D. Wang. "Lorenz Wind Disturbance Model Based on Grey Generated Components." Energies, Vol. 7, no. 11, pp. 7178-7193, Nov. 2014.
[CrossRef] [Web of Science Times Cited 13] [SCOPUS Times Cited 14]


[14] Y. G. Zhang, J. Y. Yang, K. C. Wang, Z. P. Wang, "Wind Power Prediction Considering Nonlinear Atmospheric Disturbances." Energies, Vol. 8, pp. 475-489, Jan. 2015.
[CrossRef] [Web of Science Times Cited 19] [SCOPUS Times Cited 20]


[15] Z.Y. Su, J.Z. Wang, H.Y. Lu, G. Zhao, "A new hybrid model optimized by an intelligent optimization algorithm for wind speed forecasting," Energy Conversion and Management, Vol. 85, pp. 443-452, Sep. 2014.
[CrossRef] [Web of Science Times Cited 68] [SCOPUS Times Cited 77]


[16] M. Monfared, H. Rastegar, H. M. Kojabadi, "A new strategy for wind speed forecasting using artificial intelligent methods," Renewable Energy, Vol. 34, no.3, pp. 845-848, Mar. 2008.
[CrossRef] [Web of Science Times Cited 160] [SCOPUS Times Cited 214]


[17] C. Ren, N. An, J. Z. Wang, et al., "Optimal parameters selection for BP neural network based on particle swarm optimization: A case study of wind speed forecasting," Knowledge-Based Systems, Vol. 56, pp. 226-239, Jan. 2014.
[CrossRef] [Web of Science Times Cited 347] [SCOPUS Times Cited 417]


[18] S. B. Ghosn, F. Drouby, H. M. Harmanani, "A Parallel Genetic Algorithm for the Open-Shop Scheduling Problem Using Deterministic and Random Moves," International Journal of Artificial Intelligence, Vol. 14, no. 1, pp. 130-144, 2016.

[19] A. Mellit, A. M. Pavan, M. Benghanem, "Least squares support vector machine for short-term prediction of meteorological time series," Theor Appl Climatol, Vol. 111, pp. 297-307, May. 2013.
[CrossRef] [Web of Science Times Cited 91] [SCOPUS Times Cited 109]


[20] X. H. Yuan, C. Chen, Y. B. Yuan, Y. H. Huang, "Short-term wind power prediction based on LSSVM-GSA modal," Energy Conversion and Management, Vol. 101, pp. 393-401, Sep. 2015.
[CrossRef] [Web of Science Times Cited 171] [SCOPUS Times Cited 195]


[21] M. A. Ramírez-Ortegón, V. Märgner, E. Cuevas, R. Rojas, "An optimization for binarization methods by removing binary artifacts," Pattern Recognition Letters, Vol. 34, pp. 1299-1306,Aug. 2013.
[CrossRef] [Web of Science Times Cited 11] [SCOPUS Times Cited 24]


[22] R. E. Precup, S. Preitl, "Optimization criteria in development of fuzzy controllers with dynamics," Engineering Applications of Artificial Intelligence, Vol. 17, pp. 661-674, Aug. 2004.
[CrossRef] [Web of Science Times Cited 57] [SCOPUS Times Cited 74]


[23] Z. Li, L. Ye, Y. N. Zhao, X. R. Song, et al., "Short-term wind power prediction based on extreme learning machine with error correction," Protection and Control of Modern Power Systems, Vol. 1, pp. 2-8, Jun. 2016.
[CrossRef]


[24] E. A. Bossanyi, "Wind Turbine Control for Load Reduction," Wind Energ, Vol. 6, pp. 229-244, Jun. 2003.
[CrossRef] [Web of Science Times Cited 108] [SCOPUS Times Cited 401]




References Weight

Web of Science® Citations for all references: 2,633 TCR
SCOPUS® Citations for all references: 3,449 TCR

Web of Science® Average Citations per reference: 105 ACR
SCOPUS® Average Citations per reference: 138 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2023-03-22 10:42 in 133 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2023
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: