Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 1.221
JCR 5-Year IF: 0.961
SCOPUS CiteScore: 2.5
Issues per year: 4
Current issue: May 2021
Next issue: Aug 2021
Avg review time: 91 days


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

1,681,830 unique visits
543,558 downloads
Since November 1, 2009



Robots online now
SemanticScholar
PetalBot


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 21 (2021)
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
 Volume 20 (2020)
 
     »   Issue 4 / 2020
 
     »   Issue 3 / 2020
 
     »   Issue 2 / 2020
 
     »   Issue 1 / 2020
 
 
 Volume 19 (2019)
 
     »   Issue 4 / 2019
 
     »   Issue 3 / 2019
 
     »   Issue 2 / 2019
 
     »   Issue 1 / 2019
 
 
 Volume 18 (2018)
 
     »   Issue 4 / 2018
 
     »   Issue 3 / 2018
 
     »   Issue 2 / 2018
 
     »   Issue 1 / 2018
 
 
 Volume 17 (2017)
 
     »   Issue 4 / 2017
 
     »   Issue 3 / 2017
 
     »   Issue 2 / 2017
 
     »   Issue 1 / 2017
 
 
  View all issues  








LATEST NEWS

2021-Jun-30
Clarivate Analytics published the InCites Journal Citations Report for 2020. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.221 (1.053 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.961.

2021-Jun-06
SCOPUS published the CiteScore for 2020, computed by using an improved methodology, counting the citations received in 2017-2020 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering in 2020 is 2.5, better than all our previous results.

2021-Apr-15
Release of the v3 version of AECE Journal website. We moved to a new server and implemented the latest cryptographic protocols to assure better compatibility with the most recent browsers. Our website accepts now only TLS 1.2 and TLS 1.3 secure connections.

2020-Jun-29
Clarivate Analytics published the InCites Journal Citations Report for 2019. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.102 (1.023 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.734.

2020-Jun-11
Starting on the 15th of June 2020 we wiil introduce a new policy for reviewers. Reviewers who provide timely and substantial comments will receive a discount voucher entitling them to an APC reduction. Vouchers (worth of 25 EUR or 50 EUR, depending on the review quality) will be assigned to reviewers after the final decision of the reviewed paper is given. Vouchers issued to specific individuals are not transferable.

Read More »


    
 

  1/2017 - 2

Enhancing Trusted Cloud Computing Platform for Infrastructure as a Service

KIM, H. See more information about KIM, H. on SCOPUS See more information about KIM, H. on IEEExplore See more information about KIM, H. on Web of Science
 
View the paper record and citations in View the paper record and citations in Google Scholar
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,284 KB) | Citation | Downloads: 795 | Views: 2,258

Author keywords
authentication, communication system security, cryptographic protocols, data security, platform virtualization

References keywords
computing(17), cloud(17), security(8), trusted(7)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2017-02-28
Volume 17, Issue 1, Year 2017, On page(s): 9 - 14
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2017.01002
Web of Science Accession Number: 000396335900002
SCOPUS ID: 85014191578

Abstract
Quick view
Full text preview
The characteristics of cloud computing including on-demand self-service, resource pooling, and rapid elasticity have made it grow in popularity. However, security concerns still obstruct widespread adoption of cloud computing in the industry. Especially, security risks related to virtual machine make cloud users worry about exposure of their private data in IaaS environment. In this paper, we propose an enhanced trusted cloud computing platform to provide confidentiality and integrity of the user's data and computation. The presented platform provides secure and efficient virtual machine management protocols not only to protect against eavesdropping and tampering during transfer but also to guarantee the virtual machine is hosted only on the trusted cloud nodes against inside attackers. The protocols utilize both symmetric key operations and public key operations together with efficient node authentication model, hence both the computational cost for cryptographic operations and the communication steps are significantly reduced. As a result, the simulation shows the performance of the proposed platform is approximately doubled compared to the previous platforms. The proposed platform eliminates cloud users' worry above by providing confidentiality and integrity of their private data with better performance, and thus it contributes to wider industry adoption of cloud computing.


References | Cited By  «-- Click to see who has cited this paper

[1] P. M. Mell and T. Grance, "The NIST definition of cloud computing," National Institute of Standards and Technology, Gaithersburg, MD, NIST SP 800-145, 2011.

[2] M. Armbrust, I. Stoica, M. Zaharia, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, and A. Rabkin, "A view of cloud computing," Communications of the ACM, vol. 53, no. 4, p. 50, Apr. 2010.
[CrossRef] [Web of Science Times Cited 4347] [SCOPUS Times Cited 6129]


[3] T. Kaur and I. Chana, "Energy Efficiency Techniques in Cloud Computing: A Survey and Taxonomy," ACM Computing Surveys, vol. 48, no. 2, pp. 1-46, Oct. 2015.
[CrossRef] [Web of Science Times Cited 84] [SCOPUS Times Cited 111]


[4] M. Ali, S. U. Khan, and A. V. Vasilakos, "Security in cloud computing: Opportunities and challenges," Information Sciences, vol. 305, pp. 357-383, Jun. 2015.
[CrossRef] [Web of Science Times Cited 318] [SCOPUS Times Cited 477]


[5] C. Wang, Q. Wang, K. Ren, N. Cao, and W. Lou, "Toward Secure and Dependable Storage Services in Cloud Computing," IEEE Transactions on Services Computing, vol. 5, no. 2, pp. 220-232, Apr. 2012.
[CrossRef] [Web of Science Times Cited 236] [SCOPUS Times Cited 376]


[6] D. Zissis and D. Lekkas, "Addressing cloud computing security issues," Future Generation Computer Systems, vol. 28, no. 3, pp. 583-592, Mar. 2012.
[CrossRef] [Web of Science Times Cited 773] [SCOPUS Times Cited 1186]


[7] M. Sookhak, H. Talebian, E. Ahmed, A. Gani, and M. K. Khan, "A review on remote data auditing in single cloud server: Taxonomy and open issues," Journal of Network and Computer Applications, vol. 43, pp. 121-141, Aug. 2014.
[CrossRef] [Web of Science Times Cited 68] [SCOPUS Times Cited 96]


[8] K. Hashizume, D. G. Rosado, E. Fernández-Medina, and E. B. Fernandez, "An analysis of security issues for cloud computing," Journal of Internet Services and Applications, vol. 4, no. 1, p. 5, 2013.
[CrossRef] [SCOPUS Times Cited 407]


[9] K. Ren, C. Wang, and Q. Wang, "Security Challenges for the Public Cloud," IEEE Internet Computing, vol. 16, no. 1, pp. 69-73, Jan. 2012.
[CrossRef] [Web of Science Times Cited 370] [SCOPUS Times Cited 501]


[10] M. H. Song, "Analysis of Risks for Virtualization Technology," Applied Mechanics and Materials, vol. 539, pp. 374-377, Jul. 2014.
[CrossRef] [SCOPUS Times Cited 7]


[11] F. Zhang and H. Chen, "Security-Preserving Live Migration of Virtual Machines in the Cloud," Journal of Network and Systems Management, vol. 21, no. 4, pp. 562-587, Dec. 2013.
[CrossRef] [Web of Science Times Cited 14] [SCOPUS Times Cited 26]


[12] N. Santos, K. P. Gummadi, and R. Rodrigues, "Towards trusted cloud computing," Proc. HotCloud'09, Article no. 3, 2009.

[13] I. Khan, H. Rehman, and Z. Anwar, "Design and Deployment of a Trusted Eucalyptus Cloud," Proc. IEEE cloud computing, 2011, pp. 380-387.
[CrossRef] [SCOPUS Times Cited 34]


[14] S. Balfe, A. D. Lakhani, and K. G. Paterson, "Trusted Computing: Providing Security for Peer-to-Peer Networks," Proc. IEEE PSP'05, pp. 117-124.
[CrossRef] [Web of Science Times Cited 33] [SCOPUS Times Cited 67]


[15] D. G. Murray, G. Milos, and S. Hand, "Improving Xen security through disaggregation," Proc. VEE'08, 2008, p. 151.
[CrossRef] [SCOPUS Times Cited 156]


[16] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh, "Terra: a virtual machine-based platform for trusted computing," ACM SIGOPS Operating Systems Review, vol. 37, no. 5, p. 193, Dec. 2003.
[CrossRef] [SCOPUS Times Cited 600]


[17] Wang Han-Zhang and Huang Liu-Sheng, "An improved trusted cloud computing platform model based on DAA and privacy CA scheme," Proc. ICCAMS 2010, 2010, pp. V13-33-V13-39.
[CrossRef] [SCOPUS Times Cited 21]


[18] Ge Cheng and A. K. Ohoussou, "Sealed storage for trusted cloud computing," Proc. ICCDA 2010, 2010, pp. V5-335-V5-339.
[CrossRef] [SCOPUS Times Cited 9]


[19] S. R. Pojage and M. A. Pund, "Review of trusted cloud computing platform security," Proc. NCSC2D 2016, pp. 167-172, Feb. 2016.

[20] B. C. Neuman and T. Ts'o, "Kerberos: an authentication service for computer networks," IEEE Communications Magazine, vol. 32, no. 9, pp. 33-38, Sep. 1994.
[CrossRef] [Web of Science Times Cited 512] [SCOPUS Times Cited 825]




References Weight

Web of Science® Citations for all references: 6,755 TCR
SCOPUS® Citations for all references: 11,028 TCR

Web of Science® Average Citations per reference: 322 ACR
SCOPUS® Average Citations per reference: 525 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2021-07-21 15:56 in 112 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2021
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: