1/2017 - 7 |
Vibration Based Broken Bar Detection in Induction Machine for Low Load ConditionsMATIC, D.![]() ![]() ![]() ![]() ![]() ![]() |
View the paper record and citations in ![]() |
Click to see author's profile in ![]() ![]() ![]() |
Download PDF ![]() |
Author keywords
motor, bar, vibration, fault, detection
References keywords
diagnosis(11), induction(10), rotor(8), detection(8), broken(8), fault(7), sanchez(6), pineda(6), motor(6), vibration(5)
Blue keywords are present in both the references section and the paper title.
About this article
Date of Publication: 2017-02-28
Volume 17, Issue 1, Year 2017, On page(s): 49 - 54
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2017.01007
Web of Science Accession Number: 000396335900007
SCOPUS ID: 85014214831
Abstract
A new method for broken bar detection, based on vibration signal analysis, is presented in this paper. While there are several methods for broken bar detection at low slip based on the current signal analysis, detection based on vibration signals attracts much less attention. In the current paper, detection of the broken bar was conducted by observing fault frequency content of the modulus of the analytical vibration signal. A broken bar feature is extracted from low frequency range even for low slip conditions. Although this method is successfully used for broken bar detection based on current signal analysis, it is important to verify the method when vibration signal is measured. Procedure is verified in a real industrial environment for induction motor of 3.15 MW. |
References | | | Cited By «-- Click to see who has cited this paper |
[1] J. M. Picazo-Rodenas, J. Antonino-Daviu, V. Climente-Alarcon, "Combination of Noninvasive Approaches for General Assessment of Induction Motors," IEEE Transactions on Industry Applications, vol. 51, no. 3, pp. 2172-2180, 2015. [CrossRef] [Web of Science Times Cited 54] [SCOPUS Times Cited 62] [2] F. Kulic, D. Matic, B. Dumnic, V. Vasic, "Optimal Fuzzy Controller Tuned by TV-PSO for Induction Motor Speed Control," Advances in Electrical and Computer Engineering, vol. 11, no. 1, pp. 49-54, 2011. [CrossRef] [Full Text] [Web of Science Times Cited 12] [SCOPUS Times Cited 11] [3] V. Ghorbanian, J. Faiz, "A survey on time and frequency characteristics of induction motors with broken rotor bars in line-start and inverter-fed modes," Mechanical Systems and Signal Processing, vol. 54-55, pp. 427-456, 2015. [CrossRef] [Web of Science Times Cited 59] [SCOPUS Times Cited 60] [4] S. Nandi, "Condition Monitoring and Fault Diagnosis of Electrical MotorsA Review," IEEE Transactions on Energy Conversion, vol. 20, no. 4, 2005. [CrossRef] [Web of Science Times Cited 1481] [SCOPUS Times Cited 1838] [5] M. R. Mehrjou, N. Mariun, N. Misron, M. A. M. Radzi, "A survey of broken rotor bar detection using PT and HT in squirrel cage electrical machine," in Proc. IEEE Student Conference on Research and Development, Kuala Lumpur, Malaysia, 13-14 Dec. 2015, pp. 506 - 510. [CrossRef] [SCOPUS Times Cited 2] [6] M. E. H. Benbouzid, G. B. Kliman, "What Stator Current Processing-Based Technique to Use for Induction Motor Rotor Faults Diagnosis?," IEEE Transactions on Energy Conversion, vol. 18, no. 2, pp. 238 - 244, 2003. [CrossRef] [Web of Science Times Cited 334] [SCOPUS Times Cited 432] [7] R. Puche-Panadero, M. Pineda-Sanchez, M. Riera-Guasp, J. Roger-Folc, E. Hurtado-Perez and J. Perez-Cruz, "Improved resolution of the MCSA method via Hilbert transform, enabling the diagnosis of rotor asymmetries at very low slip," IEEE Transactions on Energy Conversion, vol. 24, no. 1, pp. 52-59, 2009. [CrossRef] [Web of Science Times Cited 208] [SCOPUS Times Cited 243] [8] D. Matic, F. Kulic, M. Pineda-Sanchez, I. Kamenko, "Support vector machine classifier for diagnosis in electrical machines: Application to broken bar," Expert Systems with Applications, vol. 39, no. 10, pp. 8681-8689, 2012. [CrossRef] [Web of Science Times Cited 59] [SCOPUS Times Cited 64] [9] R. Gopinath, C. S. Kumar, K. I. Ramachandran, V. Upendranath, P. V. R. Sai-Kiran, "Intelligent fault diagnosis of synchronous generators," Expert Systems With Applications, vol. 45, pp. 142-149, 2016. [CrossRef] [Web of Science Times Cited 30] [SCOPUS Times Cited 37] [10] F. D. Samirmi, W. Tang, Q. Wu, "Fuzzy Ontology Reasoning for Power Transformer Fault Diagnosis," Advances in Electrical and Computer Engineering, vol. 15, no. 4, pp. 107-114, 2015. [CrossRef] [Full Text] [Web of Science Times Cited 12] [SCOPUS Times Cited 15] [11] T. Senguler, E. Karatoprak, S. Seker, "A New MLP Approach for the Detection of the Incipient Bearing Damage," Advances in Electrical and Computer Engineering, vol. 10, no. 3, pp. 34-39, 2010. [CrossRef] [Full Text] [Web of Science Times Cited 10] [SCOPUS Times Cited 13] [12] H. Saavedra, J. R. Riba, L. Romeral, "Detection of Inter-turn Faults in Five-Phase Permanent Magnet Synchronous Motors," Advances in Electrical and Computer Engineering, vol. 14, no. 4, pp. 49-54, 2014. [CrossRef] [Full Text] [Web of Science Times Cited 10] [SCOPUS Times Cited 14] [13] M. Pineda-Sanchez, M. Riera-Guasp, J. Roger-Folch, J. A. Antonino-Daviu, J. Perez-Cruz, R. Puche-Panadero, "Diagnosis of Induction Motor Faults in Time-Varying Conditions Using the Polynomial-Phase Transform of the Current," IEEE Transactions on Industrial Electronics, vol. 58, no. 4, pp. 1428-1439, 2011. [CrossRef] [Web of Science Times Cited 37] [SCOPUS Times Cited 45] [14] J. Pons-Llinares, J. A. Antonino-Daviu, M. Riera-Guasp, M. Pineda-Sanchez, V. Climente-Alarcon, "Induction Motor Diagnosis Based on a Transient Current Analytic Wavelet Transform via Frequency B-Splines," IEEE Transactions on Industrial Electronics, vol. 58, no. 5, pp. 1530-1544, 2011. [CrossRef] [Web of Science Times Cited 116] [SCOPUS Times Cited 129] [15] V. Choqueuse, M. E. H. Benbouzid, Y. Amirat, S. Turri, "Diagnosis of three-phase electrical machines using multidimensional demodulation techniques," IEEE Transactions on Industrial Electronics, vol. 59, no. 4, pp. 2014-2023, 2012. [CrossRef] [Web of Science Times Cited 95] [SCOPUS Times Cited 108] [16] C. Concari, G. Franceschini, C. Tassoni, A. Toscani, "Validation of a Faulted Rotor Induction Machine Model With an Insightful Geometrical Interpretation of Physical Quantities", IEEE Transactions on Industrial Electronics, vol. 60, no. 9, pp. 4074-4083, 2013. [CrossRef] [Web of Science Times Cited 20] [SCOPUS Times Cited 22] [17] Y. H. Kim, Y. W Youn, D. H. Hwang, J. H. Sun, D. S. Kang, "High-Resolution Parameter Estimation Method to Identify Broken Rotor Bar Faults in Induction Motors," IEEE Transactions on Industrial Electronics, vol. 60, no. 9, pp. 4103-4117, 2013. [CrossRef] [Web of Science Times Cited 119] [SCOPUS Times Cited 140] [18] V. Climente-Alarcon, J. A. Antonino-Daviu, F. Vedreno-Santos, R. Puche-Panadero, "Vibration Transient Detection of Broken Rotor Bars by PSH Sidebands," IEEE Transactions on Industry Applications, vol. 49, no. 6, pp. 2576-2582, 2013. [CrossRef] [Web of Science Times Cited 50] [SCOPUS Times Cited 55] [19] A. Sapena-Bano, M. Pineda-Sanchez, R. Puche-Panadero, J. Martinez-Roman, D. Matic, "Fault Diagnosis of Rotating Electrical Machines in Transient Regime Using a Single Stator Currents FFT," IEEE Transactions on instrumentation and measurement, vol. 64, no. 11, pp. 3137-3146, 2015. [CrossRef] [Web of Science Times Cited 80] [SCOPUS Times Cited 84] [20] M. Pineda-Sanchez, J. Perez-Cruz, J. Roger-Folch, M. Riera-Guasp, A. Sapena-Bano, R. Puche-Panadero, Diagnosis of Induction Motor Faults using a DSP and Advanced Demodulation Techniques", in Proc. 9th IEEE SDEMPED, Valencia, Spain, 27-30, Aug.2013, pp.69-76. [CrossRef] [SCOPUS Times Cited 12] [21] S. Biswal, J. D. George, G. R Sabareesh, "Fault Size Estimation Using Vibration Signatures in a Wind Turbine Test-rig", Procedia Engineering, vol. 144, pp. 305-311, 2016. [CrossRef] [Web of Science Times Cited 9] [SCOPUS Times Cited 17] [22] M. Amarnath, I. R. P. Krishna, "Local fault detection in helical gears via vibration and acoustic signals using EMD based statistical parameter analysis", Measurement, vol. 58, pp. 154-164, 2014. [CrossRef] [Web of Science Times Cited 68] [SCOPUS Times Cited 82] [23] Z. Kanovic, D. Matic, Z. Jelicic, M. Rapaic, B. Jakovljevic, M. Kapetina, Induction Motor Broken Rotor Bar Detection Using Vibration Analysis - A Case Study," in Proc. 9th IEEE SDEMPED, Valencia, Spain, 27-30, Aug. 2013, pp.64-68. [CrossRef] [SCOPUS Times Cited 24] [24] J. Obuchowski, R. Zimroz, A. Wylomanska, "Blind equalization using combined skewness-kurtosis criterion for gearbox vibration enhancement," Measurement, vol. 88, pp. 34-44, 2016. [CrossRef] [Web of Science Times Cited 34] [SCOPUS Times Cited 34] [25] D. Matic, Z. Kanovic, D. Reljic, F. Kulic, D. Oros, V. Vasic, "Broken Bar Detection Using Current Analysis - A Case Study," in Proc. 9th IEEE SDEMPED, Valencia, Spain, 27-30, Aug. 2013, pp. 407-411. [CrossRef] [SCOPUS Times Cited 9] [26] D. Reljic, D. Jerkan, D. Marcetic, Dj. Oros, "Broken Bar Fault Detection in IM Operating Under No-load Condition," Advances in Electrical and Computer Engineering, vol. 16, no. 4, pp. 63-70, 2016. [CrossRef] [Full Text] [Web of Science Times Cited 12] [SCOPUS Times Cited 10] Web of Science® Citations for all references: 2,909 TCR SCOPUS® Citations for all references: 3,562 TCR Web of Science® Average Citations per reference: 108 ACR SCOPUS® Average Citations per reference: 132 ACR TCR = Total Citations for References / ACR = Average Citations per Reference We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more Citations for references updated on 2023-09-26 23:52 in 149 seconds. Note1: Web of Science® is a registered trademark of Clarivate Analytics. Note2: SCOPUS® is a registered trademark of Elsevier B.V. Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site. |
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania
All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.
Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.
Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.