Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.700
JCR 5-Year IF: 0.700
SCOPUS CiteScore: 1.8
Issues per year: 4
Current issue: May 2024
Next issue: Aug 2024
Avg review time: 57 days
Avg accept to publ: 60 days
APC: 300 EUR


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,679,002 unique visits
1,060,198 downloads
Since November 1, 2009



Robots online now
SemanticScholar
Googlebot
bingbot


SCOPUS CiteScore

SCOPUS CiteScore


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 24 (2024)
 
     »   Issue 2 / 2024
 
     »   Issue 1 / 2024
 
 
 Volume 23 (2023)
 
     »   Issue 4 / 2023
 
     »   Issue 3 / 2023
 
     »   Issue 2 / 2023
 
     »   Issue 1 / 2023
 
 
 Volume 22 (2022)
 
     »   Issue 4 / 2022
 
     »   Issue 3 / 2022
 
     »   Issue 2 / 2022
 
     »   Issue 1 / 2022
 
 
 Volume 21 (2021)
 
     »   Issue 4 / 2021
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
  View all issues  


FEATURED ARTICLE

Analysis of the Hybrid PSO-InC MPPT for Different Partial Shading Conditions, LEOPOLDINO, A. L. M., FREITAS, C. M., MONTEIRO, L. F. C.
Issue 2/2022

AbstractPlus






LATEST NEWS

2024-Jun-20
Clarivate Analytics published the InCites Journal Citations Report for 2023. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.700 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.600.

2023-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2022. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.800 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 1.000.

2023-Jun-05
SCOPUS published the CiteScore for 2022, computed by using an improved methodology, counting the citations received in 2019-2022 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2022 is 2.0. For "General Computer Science" we rank #134/233 and for "Electrical and Electronic Engineering" we rank #478/738.

2022-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2021. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.825 (0.722 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.752.

2022-Jun-16
SCOPUS published the CiteScore for 2021, computed by using an improved methodology, counting the citations received in 2018-2021 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2021 is 2.5, the same as for 2020 but better than all our previous results.

Read More »


    
 

  2/2017 - 13

Three-Dimensional Spatial-Spectral Filtering Based Feature Extraction for Hyperspectral Image Classification

AKYUREK, H. A. See more information about AKYUREK, H. A. on SCOPUS See more information about AKYUREK, H. A. on IEEExplore See more information about AKYUREK, H. A. on Web of Science, KOCER, B. See more information about KOCER, B. on SCOPUS See more information about KOCER, B. on SCOPUS See more information about KOCER, B. on Web of Science
 
View the paper record and citations in View the paper record and citations in Google Scholar
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,582 KB) | Citation | Downloads: 1,082 | Views: 3,438

Author keywords
adaptive algorithms, feature extraction, gaussian noise, hyperspectral imaging, image classification

References keywords
image(26), hyperspectral(24), sensing(22), remote(22), classification(22), geoscience(13), images(10), tgrs(9), analysis(9), preserving(7)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2017-05-31
Volume 17, Issue 2, Year 2017, On page(s): 95 - 102
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2017.02013
Web of Science Accession Number: 000405378100013
SCOPUS ID: 85020078642

Abstract
Quick view
Full text preview
Hyperspectral pixels which have high spectral resolution are used to predict decomposition of material types on area of obtained image. Due to its multidimensional form, hyperspectral image classification is a challenging task. Hyperspectral images are also affected by radiometric noise. In order to improve the classification accuracy, many researchers are focusing on the improvement of filtering, feature extraction and classification methods. In the context of hyperspectral image classification, spatial information is as important as spectral information. In this study, a three-dimensional spatial-spectral filtering based feature extraction method is presented. It consists of three main steps. The first is a pre-processing step which include spatial-spectral information filtering in three-dimensional space. The second comprises extract functional features of filtered data. The last one is combining extracted features by serial feature fusion strategy and using to classify hyperspectral image pixels. Experiments were conducted on two popular public hyperspectral remote sensing image, 1%, 5%, 10% and 15% of samples of each classes used as training set, the remaining is used as test set. The proposed method compared with well-known methods. Experimental results show that the proposed method achieved outstanding performance than compared methods in hyperspectral image classification task.


References | Cited By  «-- Click to see who has cited this paper

[1] W. He, H. Zhang, L. Zhang, and H. Shen, "Hyperspectral Image Denoising via Noise-Adjusted Iterative Low-Rank Matrix Approximation," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 8, no. 6, pp. 3050-3061, 2015.
[CrossRef] [Web of Science Times Cited 203] [SCOPUS Times Cited 224]


[2] C. Aswathy, V. Sowmya, and K. P. Soman, "Hyperspectral Image Denoising Using Low Pass Sparse Banded Filter Matrix for Improved Sparsity Based Classification," Procedia Computer Science, vol. 58, pp. 26-33, // 2015.
[CrossRef] [Web of Science Times Cited 6] [SCOPUS Times Cited 11]


[3] B. Cui, X. Ma, X. Xie, G. Ren, and Y. Ma, "Classification of visible and infrared hyperspectral images based on image segmentation and edge-preserving filtering," Infrared Physics & Technology, vol. 81, pp. 79-88, 3// 2017.
[CrossRef] [Web of Science Times Cited 29] [SCOPUS Times Cited 35]


[4] S. Srivatsa, A. Ajay, C. K. Chandni, V. Sowmya, and K. P. Soman, "Application of Least Square Denoising to Improve ADMM Based Hyperspectral Image Classification," Procedia Computer Science, vol. 93, pp. 416-423, // 2016.
[CrossRef] [Web of Science Times Cited 3] [SCOPUS Times Cited 9]


[5] J. Huang, Y. Ma, X. Mei, and F. Fan, "A hybrid spatial-spectral denoising method for infrared hyperspectral images using 2DPCA," Infrared Physics & Technology, vol. 79, pp. 68-73, 11// 2016.
[CrossRef] [Web of Science Times Cited 8] [SCOPUS Times Cited 7]


[6] X. Kang, S. Li, and J. A. Benediktsson, "Spectral–spatial hyperspectral image classification with edge-preserving filtering," IEEE transactions on geoscience and remote sensing, vol. 52, no. 5, pp. 2666-2677, 2014.
[CrossRef] [Web of Science Times Cited 606] [SCOPUS Times Cited 665]


[7] X. Li, J. Pan, Y. He, and C. Liu, "Bilateral filtering inspired locality preserving projections for hyperspectral images," Neurocomputing, vol. 164, pp. 300-306, 9/21/ 2015.
[CrossRef] [Web of Science Times Cited 25] [SCOPUS Times Cited 33]


[8] Y.-L. Chang, J.-N. Liu, C.-C. Han, and Y.-N. Chen, "Hyperspectral Image Classification Using Nearest Feature Line Embedding Approach," IEEE Transactions on Geoscience and Remote Sensing, vol. 52, no. 1, pp. 278-287, 2014.
[CrossRef] [Web of Science Times Cited 37] [SCOPUS Times Cited 39]


[9] H.-Y. Huang and B.-C. Kuo, "Double Nearest Proportion Feature Extraction for Hyperspectral-Image Classification," IEEE Transactions on Geoscience and Remote Sensing, vol. 48, no. 11, pp. 4034–4046, 2010.
[CrossRef] [Web of Science Times Cited 53] [SCOPUS Times Cited 60]


[10] S. T. Tu, J. Y. Chen, W. Yang, and H. Sun, "Laplacian Eigenmaps-Based Polarimetric Dimensionality Reduction for SAR Image Classification," IEEE Transactions on Geoscience and Remote Sensing, vol. 50, no. 1, pp. 170-179, 2012.
[CrossRef] [Web of Science Times Cited 78] [SCOPUS Times Cited 104]


[11] W. Li, S. Prasad, J. E. Fowler, and L. M. Bruce, "Locality-Preserving Discriminant Analysis in Kernel-Induced Feature Spaces for Hyperspectral Image Classification," IEEE Geoscience and Remote Sensing Letters, vol. 8, no. 5, pp. 894-898, 2011.
[CrossRef] [Web of Science Times Cited 100] [SCOPUS Times Cited 116]


[12] W. Li, S. Prasad, J. E. Fowler, and L. M. Bruce, "Locality-Preserving Dimensionality Reduction and Classification for Hyperspectral Image Analysis," IEEE Transactions on Geoscience and Remote Sensing, vol. 50, no. 4, pp. 1185-1198, 2012.
[CrossRef] [Web of Science Times Cited 393] [SCOPUS Times Cited 453]


[13] R. Luo, W. Liao, and Y. Pi, "Discriminative Supervised Neighborhood Preserving Embedding Feature Extraction for Hyperspectral-image Classification," TELKOMNIKA Indonesian Journal of Electrical Engineering, vol. 10, no. 5, pp. 1051–1056, 2012.
[CrossRef]


[14] Y. Wei et al., "Hyperspectral image classification using FPCA-based kernel extreme learning machine," Optik - International Journal for Light and Electron Optics, vol. 126, no. 23, pp. 3942-3948, 2015.
[CrossRef] [Web of Science Times Cited 20] [SCOPUS Times Cited 22]


[15] C.-C. Chang and C.-J. Lin, "Libsvm," ACM Transactions on Intelligent Systems and Technology, vol. 2, no. 3, pp. 1-27, 2011.
[CrossRef] [Web of Science Times Cited 24543] [SCOPUS Times Cited 27321]


[16] Y. Bazi and F. Melgani, "Toward an Optimal SVM Classification System for Hyperspectral Remote Sensing Images," IEEE Transactions on Geoscience and Remote Sensing, vol. 44, no. 11, pp. 3374-3385, 2006.
[CrossRef] [Web of Science Times Cited 324] [SCOPUS Times Cited 404]


[17] G. Mountrakis, J. Im, and C. Ogole, "Support vector machines in remote sensing: A review," ISPRS Journal of Photogrammetry and Remote Sensing, vol. 66, no. 3, pp. 247-259, 2011.
[CrossRef] [Web of Science Times Cited 2259] [SCOPUS Times Cited 2554]


[18] B. Demir and S. Erturk, "Hyperspectral Image Classification Using Relevance Vector Machines," IEEE Geoscience and Remote Sensing Letters, vol. 4, no. 4, pp. 586-590, 2007.
[CrossRef] [Web of Science Times Cited 132] [SCOPUS Times Cited 181]


[19] G. B. Huang, H. Zhou, X. Ding, and R. Zhang, "Extreme learning machine for regression and multiclass classification," IEEE Trans Syst Man Cybern B Cybern, vol. 42, no. 2, pp. 513-29, Apr 2012.
[CrossRef] [Web of Science Times Cited 4269] [SCOPUS Times Cited 5115]


[20] M. Han and B. Liu, "A Remote Sensing Image Classification Method Based on Extreme Learning Machine Ensemble," Lecture Notes in Computer Science, vol. 7951, pp. 447-454, 2013.
[CrossRef]


[21] M. Pal, A. E. Maxwell, and T. A. Warner, "Kernel-based extreme learning machine for remote-sensing image classification," Remote Sensing Letters, vol. 4, no. 9, pp. 853-862, 2013.
[CrossRef] [Web of Science Times Cited 108] [SCOPUS Times Cited 180]


[22] M. J. McDonnell, "Box-filtering techniques," Computer Graphics and Image Processing, vol. 17, no. 1, pp. 65-70, 1981.
[CrossRef] [Web of Science Times Cited 147] [SCOPUS Times Cited 198]


[23] P. Saint-Marc, J. S. Chen, and G. Medioni, "Adaptive smoothing: a general tool for early vision," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 13, no. 6, pp. 618-624, 1989.
[CrossRef]


[24] P. Perona and J. Malik, "Scale-space and edge detection using anisotropic diffusion," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, no. 7, pp. 629-639, 1990.
[CrossRef] [Web of Science Times Cited 8178] [SCOPUS Times Cited 10391]


[25] L. Yaroslavsky, Digital Picture Processing - An Introduction. Springer-Verlag Berlin Heidelberg, 1985.
[CrossRef]


[26] J.-S. Lee, "Digital image smoothing and the sigma filter," Computer Vision, Graphics, and Image Processing, vol. 24, no. 2, pp. 255-269, 1983.
[CrossRef] [Web of Science Times Cited 599] [SCOPUS Times Cited 747]


[27] C. Tomasi and R. Manduchi, "Bilateral Filtering for gray and color images," in ICCV '98, Sixth International Conference on Computer Vision, Washington DC, 1998.
[CrossRef] [Web of Science Times Cited 5594]


[28] S. M. Smith and J. M. Brady, "SUSAN - A New Approach to Low Level Image Processing," International Journal of Computer Vision, vol. 23, no. 1, pp. 45-78, 1997.
[CrossRef] [Web of Science Times Cited 2144] [SCOPUS Times Cited 2944]


[29] M. Elad, "On the origin of the bilateral filter and ways to improve it," IEEE Trans Image Process, vol. 11, no. 10, pp. 1141-51, 2002.
[CrossRef] [Web of Science Times Cited 549] [SCOPUS Times Cited 676]


[30] A. Buades, B. Coll, and J. M. Morel, "A Review of Image Denoising Algorithms, with a New One," Multiscale Modeling & Simulation, vol. 4, no. 2, pp. 490-530, 2005.
[CrossRef] [Web of Science Times Cited 3109] [SCOPUS Times Cited 3775]


[31] J. V. Manjon, P. Coupe, L. Marti-Bonmati, D. L. Collins, and M. Robles, "Adaptive non-local means denoising of MR images with spatially varying noise levels," J Magn Reson Imaging, vol. 31, no. 1, pp. 192-203, Jan 2010.
[CrossRef] [Web of Science Times Cited 688] [SCOPUS Times Cited 755]


[32] P. Coupe, P. Yger, S. Prima, P. Hellier, C. Kervrann, and C. Barillot, "An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images," IEEE Trans Med Imaging, vol. 27, no. 4, pp. 425-41, Apr 2008.
[CrossRef] [Web of Science Times Cited 830] [SCOPUS Times Cited 937]


[33] B. M. ter Haar Romeny, Front-End Vision and Multi-Scale Image Analysis. Springer Netherlands, 2003.
[CrossRef]


[34] H. L. Shang, "A survey of functional principal component analysis," AStA Advances in Statistical Analysis, vol. 98, no. 2, pp. 121-142, 2013.
[CrossRef] [Web of Science Times Cited 105] [SCOPUS Times Cited 111]


[35] J.-L. Wang, J.-M. Chiou, and H.-G. Müller, "Functional data analysis," Annual Review of Statistics and Its Application, vol. 3, pp. 257-295, 2016.
[CrossRef] [Web of Science Times Cited 507] [SCOPUS Times Cited 551]


[36] J. O. Ramsay and B. W. Silverman, Functional Data Analysis, 2nd Ed. New York: Springer, 2005.
[CrossRef]


[37] J. Yang, J.-y. Yang, D. Zhang, and J.-f. Lu, "Feature fusion: parallel strategy vs. serial strategy," Pattern Recognition, vol. 36, no. 6, pp. 1369-1381, 6// 2003.
[CrossRef] [Web of Science Times Cited 312] [SCOPUS Times Cited 403]


[38] M. F. Baumgardner, L. L. Biehl, and D. A. Landgrebe. 220 Band AVIRIS Hyperspectral Image Data Set: June 12, 1992 Indian Pine Test Site 3 [Online]. Available:
[CrossRef]


[39] . AVIRIS Salinas Valley and ROSIS Pavia University Hyperspectral Datasets. Available: http://www.ehu.es/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes

[40] R. Roscher and B. Waske, "Shapelet-Based Sparse Representation for Landcover Classification of Hyperspectral Images," IEEE Transactions on Geoscience and Remote Sensing, vol. 54, no. 3, pp. 1623-1634, 2016.
[CrossRef] [Web of Science Times Cited 28] [SCOPUS Times Cited 30]


[41] C. Li, Y. Ma, X. Mei, C. Liu, and J. Ma, "Hyperspectral Image Classification With Robust Sparse Representation," IEEE Geoscience and Remote Sensing Letters, vol. 13, no. 5, pp. 641-645, 2016.
[CrossRef] [Web of Science Times Cited 86] [SCOPUS Times Cited 93]


[42] W. Li, Q. Du, and M. Xiong, "Kernel Collaborative Representation With Tikhonov Regularization for Hyperspectral Image Classification," IEEE Geoscience and Remote Sensing Letters, vol. 12, no. 1, pp. 1-5, 2014.
[CrossRef] [Web of Science Times Cited 139] [SCOPUS Times Cited 148]


[43] L. Fang, S. Li, W. Duan, J. Ren, and J. A. Benediktsson, "Classification of Hyperspectral Images by Exploiting Spectral–Spatial Information of Superpixel via Multiple Kernels," IEEE Transactions on Geoscience and Remote Sensing, vol. 53, no. 12, pp. 6663-6674, 2015.
[CrossRef] [Web of Science Times Cited 336] [SCOPUS Times Cited 354]


[44] K. Xudong, L. Shutao, F. Leyuan, L. Meixiu, and J. A. Benediktsson, "Extended Random Walker-Based Classification of Hyperspectral Images," IEEE Transactions on Geoscience and Remote Sensing, vol. 53, no. 1, pp. 144-153, 2015.
[CrossRef] [Web of Science Times Cited 107] [SCOPUS Times Cited 116]


[45] J. Li, M. Khodadadzadeh, A. Plaza, X. Jia, and J. M. Bioucas-Dias, "A Discontinuity Preserving Relaxation Scheme for Spectral–Spatial Hyperspectral Image Classification," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 9, no. 2, pp. 625-639, 2016.
[CrossRef] [Web of Science Times Cited 70] [SCOPUS Times Cited 77]






References Weight

Web of Science® Citations for all references: 56,724 TCR
SCOPUS® Citations for all references: 59,839 TCR

Web of Science® Average Citations per reference: 1,207 ACR
SCOPUS® Average Citations per reference: 1,273 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2024-07-10 14:39 in 295 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2024
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: 


DNS Made Easy