Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.825
JCR 5-Year IF: 0.752
SCOPUS CiteScore: 2.5
Issues per year: 4
Current issue: Aug 2022
Next issue: Nov 2022
Avg review time: 77 days
Avg accept to publ: 48 days
APC: 300 EUR


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,004,610 unique visits
805,554 downloads
Since November 1, 2009



Robots online now
bingbot
Googlebot


SCOPUS CiteScore

SCOPUS CiteScore


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 22 (2022)
 
     »   Issue 3 / 2022
 
     »   Issue 2 / 2022
 
     »   Issue 1 / 2022
 
 
 Volume 21 (2021)
 
     »   Issue 4 / 2021
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
 Volume 20 (2020)
 
     »   Issue 4 / 2020
 
     »   Issue 3 / 2020
 
     »   Issue 2 / 2020
 
     »   Issue 1 / 2020
 
 
 Volume 19 (2019)
 
     »   Issue 4 / 2019
 
     »   Issue 3 / 2019
 
     »   Issue 2 / 2019
 
     »   Issue 1 / 2019
 
 
  View all issues  








LATEST NEWS

2022-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2021. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.825 (0.722 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.752.

2022-Jun-16
SCOPUS published the CiteScore for 2021, computed by using an improved methodology, counting the citations received in 2018-2021 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering in 2021 is 2.5, the same as for 2020 but better than all our previous results.

2021-Jun-30
Clarivate Analytics published the InCites Journal Citations Report for 2020. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.221 (1.053 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.961.

2021-Jun-06
SCOPUS published the CiteScore for 2020, computed by using an improved methodology, counting the citations received in 2017-2020 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering in 2020 is 2.5, better than all our previous results.

2021-Apr-15
Release of the v3 version of AECE Journal website. We moved to a new server and implemented the latest cryptographic protocols to assure better compatibility with the most recent browsers. Our website accepts now only TLS 1.2 and TLS 1.3 secure connections.

Read More »


    
 

  3/2017 - 14
View TOC | « Previous Article | Next Article »

 HIGH-IMPACT PAPER 

Wind Speed Prediction with Wavelet Time Series Based on Lorenz Disturbance

ZHANG, Y. See more information about ZHANG, Y. on SCOPUS See more information about ZHANG, Y. on IEEExplore See more information about ZHANG, Y. on Web of Science, WANG, P. See more information about  WANG, P. on SCOPUS See more information about  WANG, P. on SCOPUS See more information about WANG, P. on Web of Science, CHENG, P. See more information about  CHENG, P. on SCOPUS See more information about  CHENG, P. on SCOPUS See more information about CHENG, P. on Web of Science, LEI, S. See more information about LEI, S. on SCOPUS See more information about LEI, S. on SCOPUS See more information about LEI, S. on Web of Science
 
View the paper record and citations in View the paper record and citations in Google Scholar
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,200 KB) | Citation | Downloads: 866 | Views: 3,345

Author keywords
ARMA model, Lorenz system, renewable energy, wavelet decomposition, wind speed prediction

References keywords
wind(14), energy(10), speed(8), prediction(8), time(6), power(6), systems(5), series(5), forecasting(5), models(4)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2017-08-31
Volume 17, Issue 3, Year 2017, On page(s): 107 - 114
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2017.03014
Web of Science Accession Number: 000410369500014
SCOPUS ID: 85030118150

Abstract
Quick view
Full text preview
Due to the sustainable and pollution-free characteristics, wind energy has been one of the fastest growing renewable energy sources. However, the intermittent and random fluctuation of wind speed presents many challenges for reliable wind power integration and normal operation of wind farm. Accurate wind speed prediction is the key to ensure the safe operation of power system and to develop wind energy resources. Therefore, this paper has presented a wavelet time series wind speed prediction model based on Lorenz disturbance. Therefore, in this paper, combined with the atmospheric dynamical system, a wavelet-time series improved wind speed prediction model based on Lorenz disturbance is proposed and the wind turbines of different climate types in Spain and China are used to simulate the disturbances of Lorenz equations with different initial values. The prediction results show that the improved model can effectively correct the preliminary prediction of wind speed, improving the prediction. In a word, the research work in this paper will be helpful to arrange the electric power dispatching plan and ensure the normal operation of the wind farm.


References | Cited By  «-- Click to see who has cited this paper

[1] J. Z. Wang, Y. L. Song, F. Liu, R. Hou, "Analysis and application of forecasting models in wind power integration: A review of multi-step-ahead wind speed forecasting models," Renewable and Sustainable Energy Reviews, vol. 60, pp. 960-981, Feb. 2016.
[CrossRef] [Web of Science Times Cited 139] [SCOPUS Times Cited 159]


[2] C. D. Zuluaga, M. A. Álvarez, E. Giraldo, "Short-term wind speed prediction based on robust Kalman filtering: An experimental comparison," Applied Energy, vol. 156, pp. 321-330, Jul. 2015.
[CrossRef] [Web of Science Times Cited 112] [SCOPUS Times Cited 124]


[3] J. Koo, G. D. Han, H. J. Choi, J. H. Shim, "Wind-speed prediction and analysis based on geological and distance variables using an artificial neural network: A case study in South Korea," Energy, vol. 93, pp. 1296-1302, Nov. 2015.
[CrossRef] [Web of Science Times Cited 20] [SCOPUS Times Cited 24]


[4] Ü. B. Filik, T. Filik, "Wind Speed Prediction Using Artificial Neural Networks Based on Multiple Local Measurements in Eskisehir," Energy Procedia, vol. 107, pp. 264 - 269, Sep. 2017.
[CrossRef] [Web of Science Times Cited 48] [SCOPUS Times Cited 56]


[5] Y. Noorollahi, M. A. Jokar, A. Kalhor, "Using artificial neural networks for temporal and spatial wind speed forecasting in Iran," Energy Conversion and Management, vol. 115, pp. 17-25, May. 2016.
[CrossRef] [Web of Science Times Cited 103] [SCOPUS Times Cited 117]


[6] H. R. Zhao, S. Guo, "An optimized grey model for annual power load forecasting," Energy, vol. 107, pp. 272-286, Jul. 2016.
[CrossRef] [Web of Science Times Cited 129] [SCOPUS Times Cited 144]


[7] H. P. Liu, J. Shi, E. Erdem, "Prediction of wind speed time series using modified Taylor Kriging method," Energy, vol. pp. 35, 4870-4879, Dec. 2010.
[CrossRef] [Web of Science Times Cited 79] [SCOPUS Times Cited 94]


[8] E. Erdem, J. Shi, "ARMA based approaches for forecasting the tuple of wind speed and direction," Applied Energy, vol. 88, pp. 1405-1414, Oct. 2011.
[CrossRef] [Web of Science Times Cited 521] [SCOPUS Times Cited 604]


[9] Y. G. Zhang, P. H. Wang, T. Ni, P. L. Cheng, S. Lei. "Wind Power Prediction Based on LS-SVM Model with Error Correction," Advances in Electrical and Computer Engineering, vol. 17, pp. 3-8, Feb. 2017.
[CrossRef] [Full Text] [Web of Science Times Cited 46] [SCOPUS Times Cited 47]


[10] J. Heinermann, O. Kramer, "Machine learning ensembles for wind power prediction," Renewable Energy, vol. 89, pp. 671-679, Dec. 2016.
[CrossRef] [Web of Science Times Cited 105] [SCOPUS Times Cited 129]


[11] A. Glowacz. "Recognition of Acoustic Signals of Loaded Synchronous Motor Using FFT, MSAF-5 and LSVM," Archives of Acoustics, vol. 40, pp. 197-203, Feb. 2015.
[CrossRef] [Web of Science Times Cited 36] [SCOPUS Times Cited 37]


[12] L. Karthikeyan, D. N. Kumar, "Predictability of nonstationary time series using wavelet and EMD based ARMA models," Journal of Hydrology, vol. 502, pp. 103-119, Aug. 2013.
[CrossRef] [Web of Science Times Cited 107] [SCOPUS Times Cited 126]


[13] H. K. Lam, F. H. F. Leung, and P. K. S. Tam. "Stable and Robust Fuzzy Control for Uncertain Nonlinear Systems," IEEE Transactions on Systems, Man, and Cybernetics-part A: Systems and Humans, vol. 30, pp. 825-839, Nov. 2000.
[CrossRef] [Web of Science Times Cited 82] [SCOPUS Times Cited 97]


[14] R. E. Precup, S. Preitl. "PI-Fuzzy controllers for integral plants to ensure robust stability," Information Sciences, vol. 177, pp. 4410-4429, May, 2007.
[CrossRef] [Web of Science Times Cited 54] [SCOPUS Times Cited 73]


[15] A. El-Gohary, F. Bukhari, "Optimal control of Lorenz system during different time intervals," Applied Mathematics and Computation, vol. 144, pp. 337-351, Dec. 2003.
[CrossRef] [Web of Science Times Cited 12] [SCOPUS Times Cited 15]


[16] J. Lu, J.H. Lv, J. Xie, G. R. Chen, "Reconstruction of the Lorenz and Chen Systems with Noisy Observations," Computers and Mathematics with Applications, vol. 46, pp. 1427-1434, Oct. 2003.
[CrossRef]


[17] D. C. Kiplangat, K. Asokan, K. S. Kumar, "Improved week-ahead predictions of wind speed using simple linear models with wavelet decomposition," Renewable Energy, vol. 93, pp. 38-44, Aug. 2016.
[CrossRef] [Web of Science Times Cited 56] [SCOPUS Times Cited 68]


[18] X.L. An, D.X. Jiang, C. Liu, M.H. Zhao, "Wind farm power prediction based on wavelet decomposition and chaotic time series," Expert Systems with Applications, vol. 38, pp. 11280-11285, Sep. 2011.
[CrossRef] [Web of Science Times Cited 60] [SCOPUS Times Cited 77]


[19] http://www.sotaventogalicia.com/en/real-time-data/historical

[20] A. Glowacz. "Recognition of acoustic signals of induction motor using FTF, SMOFS-10 and LSVM," Eksploatacja i Niezawodnosc-Maintenance and Reliability, vol. 17, pp. 569-574, Sep. 2015.
[CrossRef] [Web of Science Times Cited 43] [SCOPUS Times Cited 38]


[21] Y. G. Zhang, J. Y. Yang, K. C. Wang, Z. P. Wang, "Wind Power Prediction Considering Nonlinear Atmospheric Disturbances," Energies, vol. 8, pp. 475-489, Jan. 2015.
[CrossRef] [Web of Science Times Cited 19] [SCOPUS Times Cited 20]


[22] W. Tucker, "The Lorenz attractor exists," Comptes Rendus de l'Académie des Sciences - Series I - Mathematics, vol. 328, pp. 1197-1202, Jun. 1999.
[CrossRef] [Web of Science Times Cited 311] [SCOPUS Times Cited 345]


[23] Y. G. Zhang, J. Y. Yang, K. C. Wang, Y. D. Wang, "Lorenz Wind Disturbance Model Based on Grey Generated Components," Energies, vol. 7, pp. 7178-7193, Nov. 2014.
[CrossRef] [Web of Science Times Cited 13] [SCOPUS Times Cited 13]


[24] P. M. T. Broersen. "Automatic Time Series Identification Spectral Analysis with MATLAB Toolbox ARMASA," IFAC Proceedings Volumes, vol. 36, pp. 1435-1440, Sep. 2003.
[CrossRef] [SCOPUS Times Cited 1]




References Weight

Web of Science® Citations for all references: 2,095 TCR
SCOPUS® Citations for all references: 2,408 TCR

Web of Science® Average Citations per reference: 84 ACR
SCOPUS® Average Citations per reference: 96 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2022-11-21 12:54 in 176 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2022
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: