Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.800
JCR 5-Year IF: 1.000
SCOPUS CiteScore: 2.0
Issues per year: 4
Current issue: Feb 2024
Next issue: May 2024
Avg review time: 75 days
Avg accept to publ: 48 days
APC: 300 EUR


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,485,356 unique visits
989,788 downloads
Since November 1, 2009



Robots online now
Googlebot
SemanticScholar
bingbot


SCOPUS CiteScore

SCOPUS CiteScore


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 24 (2024)
 
     »   Issue 1 / 2024
 
 
 Volume 23 (2023)
 
     »   Issue 4 / 2023
 
     »   Issue 3 / 2023
 
     »   Issue 2 / 2023
 
     »   Issue 1 / 2023
 
 
 Volume 22 (2022)
 
     »   Issue 4 / 2022
 
     »   Issue 3 / 2022
 
     »   Issue 2 / 2022
 
     »   Issue 1 / 2022
 
 
 Volume 21 (2021)
 
     »   Issue 4 / 2021
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
  View all issues  


FEATURED ARTICLE

Application of the Voltage Control Technique and MPPT of Stand-alone PV System with Storage, HIVZIEFENDIC, J., VUIC, L., LALE, S., SARIC, M.
Issue 1/2022

AbstractPlus






LATEST NEWS

2023-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2022. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.800 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 1.000.

2023-Jun-05
SCOPUS published the CiteScore for 2022, computed by using an improved methodology, counting the citations received in 2019-2022 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2022 is 2.0. For "General Computer Science" we rank #134/233 and for "Electrical and Electronic Engineering" we rank #478/738.

2022-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2021. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.825 (0.722 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.752.

2022-Jun-16
SCOPUS published the CiteScore for 2021, computed by using an improved methodology, counting the citations received in 2018-2021 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2021 is 2.5, the same as for 2020 but better than all our previous results.

2021-Jun-30
Clarivate Analytics published the InCites Journal Citations Report for 2020. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.221 (1.053 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.961.

Read More »


    
 

  1/2018 - 5

 HIGHLY CITED PAPER 

FEM Based Multi-Criterion Design and Implementation of a PM Synchronous Wind Generator by Fully Coupled Co-Simulation

OCAK, C. See more information about OCAK, C. on SCOPUS See more information about OCAK, C. on IEEExplore See more information about OCAK, C. on Web of Science, UYGUN, D. See more information about  UYGUN, D. on SCOPUS See more information about  UYGUN, D. on SCOPUS See more information about UYGUN, D. on Web of Science, TARIMER, I. See more information about TARIMER, I. on SCOPUS See more information about TARIMER, I. on SCOPUS See more information about TARIMER, I. on Web of Science
 
View the paper record and citations in View the paper record and citations in Google Scholar
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (2,268 KB) | Citation | Downloads: 1,123 | Views: 737

Author keywords
design optimization, electromagnetic analysis, finite element analysis, permanent magnet machines, wind energy generation

References keywords
wind(12), design(10), machines(9), generator(9), magnet(8), permanent(7), analysis(7), generators(6), energy(6), speed(5)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2018-02-28
Volume 18, Issue 1, Year 2018, On page(s): 37 - 42
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2018.01005
Web of Science Accession Number: 000426449500005
SCOPUS ID: 85043241836

Abstract
Quick view
Full text preview
This study deals with analyzing, designing and fabricating of a 1 kW PM synchronous generator for gearless and direct drive off-grid wind turbines. Performance characteristics of this generator have been calculated analytically in collaboration with dynamic transient coupled-field analysis. All specifications of the PMSG have been investigated and optimized by using finite element method and parametric multi-criterion design approach. At the end of research, a prototype has been fabricated based on the optimized dimensions. Furthermore, the analytical calculations present along with experimental studies carried out for different shaft speeds and load levels. The comparative experimental studies have verified effectiveness of the optimized designing and dynamic co-simulations.


References | Cited By  «-- Click to see who has cited this paper

[1] Z. Guo and L. Chang, "FEM study on permanent magnet synchronous generators for small wind turbines", Proceedings of Canadian Conference on Electrical and Computer Engineering, pp. 641-644, Canada, 2005.
[CrossRef]


[2] C. Ocak, A. Dalcali, E. Çelik and D. Uygun, "FEA-Based design improvement of small scale BLDCMs considering magnet thickness and pole embrace", Int'l Journal of Computing, Communications & Instrumentation Engg., Vol. 4, no. 2, pp. 31-35, 2017.
[CrossRef]


[3] M. V. Cistelecan and M. Popescu, "Study of the number of slots-pole combinations for low speed permanent magnet synchronous generators", Proceedings of IEEE International Electric Machines and Drives Conference, pp. 1616-1620, Turkey, 2007.
[CrossRef] [SCOPUS Times Cited 43]


[4] N. B. Misron, S. Rizuan, R. N.Firdaus, C. A. Vaithilingam, H. Wakiwaka and M. Nirei, "Comparative evaluation on power-speed density of portable permanent magnet generators for agricultural application", Progress in Electromagnetics Research, Vol. 129, pp. 345-363, 2012.
[CrossRef] [Web of Science Times Cited 22] [SCOPUS Times Cited 26]


[5] J. Chen, C. V. Nayar and L. Xu, "Design and finite-element analysis of an outer-rotor permanent-magnet generator for directly coupled wind turbines", IEEE Transactions on Magnetics, Vol. 36, no. 7, pp. 3802–3809, 2000.
[CrossRef] [Web of Science Times Cited 130] [SCOPUS Times Cited 173]


[6] J. H. J. Potgieter and M. J. Kamper, "Torque and voltage quality in design optimization of low-cost non-overlap single layer winding permanent magnet wind generator", IEEE Transactions on Industrial Electronics, Vol. 59, no. 5, pp. 2147–2156, 2012.
[CrossRef] [Web of Science Times Cited 38] [SCOPUS Times Cited 43]


[7] S. Eriksson, H. Bernhoff and M. Bergkvist, "Design of a unique direct driven pm generator adapted for a telecom tower wind turbine, Renewable Energy", Vol. 44, pp. 453–456, 2012.
[CrossRef] [Web of Science Times Cited 9] [SCOPUS Times Cited 9]


[8] C. Dae-Won and Y. Yong-Min, "Cogging torque reduction in pm brushless generators for small wind turbines", Journal of Magnetics, Vol. 20, no. 2, pp. 176-185, 2015.
[CrossRef] [Web of Science Times Cited 17] [SCOPUS Times Cited 24]


[9] L. Petri, "Directly driven, low-speed pm generators for wind power applications", PhD. Thesis, Helsinki University of Technology, Helsinki, Finland, 2000.

[10] N. Madani, "Design of a PMSG for a vertical axis wind turbine", Master Thesis, Royal Institute of Technology, Sweden, 2011.

[11] L. Jian, G. Xu, Y. Gong, J. Song, J. Liang and M. Chang, "Electromagnetic design and analysis of a novel magnetic-gear-integrated wind power generator using time-stepping finite element method", Progress In Electromagnetics Research, Vol. 113, pp. 351–367, 2011.
[CrossRef] [Web of Science Times Cited 44] [SCOPUS Times Cited 54]


[12] P. Makolo, "Wind generator co-simulation with fault case analysis", Master Thesis, Chalmers University of Technology, Gothenburg, Sweden, 2013.

[13] A. M. Mihai, S. Benelghali, A. Simion, R. Outbib and L. Livadaru, "Design and fem analysis of five-phase permanent magnet generators for gearless small-scale wind turbines", Proceedings of 20th International Conference on Electrical Machines, Marseille, France, pp. 150–156, 2012.
[CrossRef] [SCOPUS Times Cited 7]


[14] J. Pyrhonen, T. Jokinen and V. Hrabovcova, "Design of rotating electrical machines", John Wiley and Sons Ltd., pp. 154–160, 2008.

[15] G. Sizov, D. Ionel and N. Demerdash, "Multi-objective optimization of pm ac machines using computationally efficient FEA and differential evolution", Proceedings of IEEE International Electric Machines Drives Conference (IEMDC), pp. 1528 –1533, Canada, 2011.
[CrossRef] [SCOPUS Times Cited 50]


[16] C. Ocak, I. Tarimer and A. Dalcali, "Advancing pole arc offset points in designing an optimal pm generator", TEM Journal, Vol. 5, no. 2, pp. 126-132, 2016.
[CrossRef] [Web of Science Times Cited 2]


[17] G. Sizov, P. Zhang, D. Ionel, N. Demerdash and M. Rosu, "Automated bi-objective design optimization of multi-MW direct-drive pm machines using ce-fea and differential evolution", Proceedings of IEEE Energy Conversion Congress and Exposition (ECCE), pp. 3672 –3678, 2011.
[CrossRef] [SCOPUS Times Cited 15]


[18] D. Zhong, "Finite element analysis of synchronous machines", PhD. Thesis, the Pennsylvania State University, USA, 2010.

[19] Y. Zhang, K. T. Chau, J. Z. Ziang, D. Zhang and Liu C., "A finite element-analytical method for electromagnetic field analysis of electric machines with free rotation", IEEE Transactions on Magnetics, Vol. 42, no. 10, pp. 3392-3394 2010.
[CrossRef] [Web of Science Times Cited 20] [SCOPUS Times Cited 22]


[20] W. Fengxiang, "Application and development tendency of pm machines in wind power generation system", Transactions of China Electrotechnical Society, Vol. 27, no. 3, pp. 12-24, 2012.

[21] A. El Shahat, A. Keyhani and H. El Shewy, "Sizing a high speed pm generator for green energy applications", Journal of Electrical Systems (JES), Vol. 6, no. 4, pp. 501-516, 2010.

[22] A. El Shahat, A. Keyhani and H. El Shewy, "400 kW six analytical high speed generator designs for smart grid systems", International Journal of Energy and Power Eng., Vol. 4, no. 3, pp. 210-227 2010.

[23] J. Krotsch and B. Piepenbreier, "Hybrid algorithm for multi-objective optimization of PMSM using massively distributed finite element analysis", 12th International Conference on Optimization of Electrical and Electronic Equipment (OPTIM), pp. 307–314 Brasov, Romania, 2010.
[CrossRef] [Web of Science Times Cited 7] [SCOPUS Times Cited 10]


[24] M. Pinilla and S. Martinez, "Optimal design of permanent-magnet direct-drive generator for wind energy considering the cost uncertainty in raw materials", International Journal of Renewable Energy, Vol. 41, pp. 267–276, 2012.
[CrossRef] [Web of Science Times Cited 10] [SCOPUS Times Cited 12]




References Weight

Web of Science® Citations for all references: 299 TCR
SCOPUS® Citations for all references: 488 TCR

Web of Science® Average Citations per reference: 12 ACR
SCOPUS® Average Citations per reference: 20 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2024-03-13 16:26 in 111 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2024
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: 


DNS Made Easy