Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.825
JCR 5-Year IF: 0.752
SCOPUS CiteScore: 2.5
Issues per year: 4
Current issue: Aug 2022
Next issue: Nov 2022
Avg review time: 77 days
Avg accept to publ: 48 days
APC: 300 EUR


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

1,973,407 unique visits
787,764 downloads
Since November 1, 2009



Robots online now
bingbot
Googlebot
Baiduspider


SCOPUS CiteScore

SCOPUS CiteScore


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 22 (2022)
 
     »   Issue 3 / 2022
 
     »   Issue 2 / 2022
 
     »   Issue 1 / 2022
 
 
 Volume 21 (2021)
 
     »   Issue 4 / 2021
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
 Volume 20 (2020)
 
     »   Issue 4 / 2020
 
     »   Issue 3 / 2020
 
     »   Issue 2 / 2020
 
     »   Issue 1 / 2020
 
 
 Volume 19 (2019)
 
     »   Issue 4 / 2019
 
     »   Issue 3 / 2019
 
     »   Issue 2 / 2019
 
     »   Issue 1 / 2019
 
 
  View all issues  








LATEST NEWS

2022-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2021. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.825 (0.722 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.752.

2022-Jun-16
SCOPUS published the CiteScore for 2021, computed by using an improved methodology, counting the citations received in 2018-2021 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering in 2021 is 2.5, the same as for 2020 but better than all our previous results.

2021-Jun-30
Clarivate Analytics published the InCites Journal Citations Report for 2020. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.221 (1.053 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.961.

2021-Jun-06
SCOPUS published the CiteScore for 2020, computed by using an improved methodology, counting the citations received in 2017-2020 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering in 2020 is 2.5, better than all our previous results.

2021-Apr-15
Release of the v3 version of AECE Journal website. We moved to a new server and implemented the latest cryptographic protocols to assure better compatibility with the most recent browsers. Our website accepts now only TLS 1.2 and TLS 1.3 secure connections.

Read More »


    
 

  4/2018 - 11

 HIGHLY CITED PAPER 

Electrical Signature Analysis for Condition Monitoring of Permanent Magnet Synchronous Machine

SALOMON, C. P. See more information about SALOMON, C. P. on SCOPUS See more information about SALOMON, C. P. on IEEExplore See more information about SALOMON, C. P. on Web of Science, FERREIRA, C. See more information about  FERREIRA, C. on SCOPUS See more information about  FERREIRA, C. on SCOPUS See more information about FERREIRA, C. on Web of Science, LAMBERT-TORRES, G. See more information about  LAMBERT-TORRES, G. on SCOPUS See more information about  LAMBERT-TORRES, G. on SCOPUS See more information about LAMBERT-TORRES, G. on Web of Science, TEIXEIRA, C. E. See more information about  TEIXEIRA, C. E. on SCOPUS See more information about  TEIXEIRA, C. E. on SCOPUS See more information about TEIXEIRA, C. E. on Web of Science, BORGES DA SILVA, L. E. See more information about  BORGES DA SILVA, L. E. on SCOPUS See more information about  BORGES DA SILVA, L. E. on SCOPUS See more information about BORGES DA SILVA, L. E. on Web of Science, SANTANA, W. C. See more information about  SANTANA, W. C. on SCOPUS See more information about  SANTANA, W. C. on SCOPUS See more information about SANTANA, W. C. on Web of Science, BONALDI, E. L. See more information about  BONALDI, E. L. on SCOPUS See more information about  BONALDI, E. L. on SCOPUS See more information about BONALDI, E. L. on Web of Science, DE OLIVEIRA, L. E. L. See more information about DE OLIVEIRA, L. E. L. on SCOPUS See more information about DE OLIVEIRA, L. E. L. on SCOPUS See more information about DE OLIVEIRA, L. E. L. on Web of Science
 
View the paper record and citations in View the paper record and citations in Google Scholar
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,966 KB) | Citation | Downloads: 836 | Views: 1,755

Author keywords
condition monitoring, digital signatures, fault detection, permanent magnet machines, predictive maintenance

References keywords
synchronous(9), stator(9), fault(9), detection(8), power(7), motors(7), permanent(6), magnet(6), electronics(6), induction(5)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2018-11-30
Volume 18, Issue 4, Year 2018, On page(s): 91 - 98
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2018.04011
Web of Science Accession Number: 000451843400011
SCOPUS ID: 85058807078

Abstract
Quick view
Full text preview
Permanent magnet synchronous machines (PMSMs) drives are attractive and have been used in several applications, because of their noteworthy advantages. In some applications, the continuous operation is necessary, and then the PMSM drive outage is unacceptable or may cause great losses. Thus, several studies have been accomplished in order to detect incipient faults in PMSMs. In this context, the electrical signature analysis (ESA) technique is highlighted, because of the feasibility and non-invasive features. ESA allows the fault detection by only analyzing the electrical machine quantities. This paper proposes a study of ESA for PMSM condition monitoring. The review of some fault patterns is presented as well as the development of a scale model laboratory to simulate faults in a real PMSM in operation. The PMSM is used to drive a fluid pumping system, and different types of fluids are tested, being different load conditions from the PMSM point of view. The presented results are promising, encouraging ESA based methodologies for PMSM fault detection.


References | Cited By  «-- Click to see who has cited this paper

[1] D. Reljic, D. Jerkan, D. Marcetic, Dj. Oros, "Broken bar fault detection in IM operating under no-load condition," Advances in Electrical and Computer Engineering, vol. 16, no. 4, pp. 63-70, 2016,
[CrossRef] [Full Text] [Web of Science Times Cited 9] [SCOPUS Times Cited 8]


[2] A. G. Espinosa, J. A. Rosero, J. Cusidó, L. Romeral, J. A. Ortega, "Fault detection by means of Hilbert-Huang transform of the stator current in a PMSM with demagnetization," IEEE Transactions on Energy Conversion, vol.25, no.2, pp.312-318, June 2010,
[CrossRef] [Web of Science Times Cited 146] [SCOPUS Times Cited 175]


[3] J. C. Urresty, J. R. Riba, L. Romeral, "Diagnosis of interturn faults in PMSMs operating under nonstationary conditions by applying order tracking filtering," IEEE Transactions on Power Electronics, vol.28, no.1, pp.507-515, Jan 2013,
[CrossRef] [Web of Science Times Cited 96] [SCOPUS Times Cited 109]


[4] H. Saavedra, J. R. Riba, L. Romeral, "Detection of inter-turn faults in five-phase permanent magnet synchronous motors," Advances in Electrical and Computer Engineering, vol.14, no.4, pp.49-54, 2014,
[CrossRef] [Full Text] [Web of Science Times Cited 9] [SCOPUS Times Cited 12]


[5] D. Matic, Z. Kanovic, "Vibration based broken bar detection in induction machine for low load conditions," Advances in Electrical and Computer Engineering, vol.17, no.1, pp.49-54, 2017,
[CrossRef] [Full Text] [Web of Science Times Cited 6] [SCOPUS Times Cited 8]


[6] E. L. Bonaldi, L. E. L. de Oliveira, J. G. Borges da Silva, G. Lambert-Torres, L. E. Borges da Silva, "Predictive maintenance by electrical signature analysis to induction motors," in Induction Motors—Modelling and Control, Rui Araujo, Eds., Rijeka, Croatia: InTech, 2012, pp.487-520, ISBN 978-953-51-0843-6,
[CrossRef]


[7] C. P. Salomon, W.C. Santana, G. Lambert-Torres; L. E. Borges da Silva, E. L. Bonaldi, L. E. de Oliveira, J. G. Borges da Silva, A. L. Pellicel, G. C. Figueiredo, M. A. A. Lopes, "Discrimination of Synchronous Machines Rotor Faults in Electrical Signature Analysis based on Symmetrical Components," IEEE Transactions on Industry Applications, vol.53, no.3, pp.3146-3155, May/June 2017,
[CrossRef] [Web of Science Times Cited 16] [SCOPUS Times Cited 19]


[8] J. Hang, J. Zhang, M. Cheng, S. Ding, "Detection and discrimination of open-phase fault in permanent magnet synchronous motor drive system," IEEE Transactions on Power Electronics, vol.31, no.7, pp.4697-4709, July 2016,
[CrossRef] [Web of Science Times Cited 67] [SCOPUS Times Cited 76]


[9] J. A. Rosero, L. Romeral, J. Cusido, A. Garcia, J. A. Ortega, "On the shortcircuiting fault detection in a PMSM by means of stator current transformations," Proc. 2007 IEEE Power Electronics Specialists Conference, IEEE PESC 2007, Orlando, pp.1936-1941, June 2007,
[CrossRef] [Web of Science Times Cited 30] [SCOPUS Times Cited 44]


[10] T. Boileau, N. Leboeuf, B. Nahid-Mobarakeh, F. Meibody-Tabar, "Stator winding inter-turn fault detection using control voltages demodulation," Proc. 2012 IEEE Transportation Electrification Conference and Expo, IEEE ITEC 2012, Dearborn, pp.1-6, June 2012,
[CrossRef] [SCOPUS Times Cited 14]


[11] J. C. Urresty, J. R. Riba, L. Romeral, "In?uence of the stator windings configuration in the currents and zero-sequence voltage harmonics in permanent magnet synchronous motors with demagnetization faults," IEEE Transactions on Magnetics, vol.49, no.8, pp.4885-4893, Aug 2013,
[CrossRef] [Web of Science Times Cited 44] [SCOPUS Times Cited 49]


[12] J. Hang, J. Zhang, M. Cheng, Z. Wang, "Fault diagnosis of mechanical unbalance for permanent magnet synchronous motor drive system under nonstationary condition," Proc. 2013 IEEE Energy Conversion Congress and Exposition, IEEE ECCE 2013, Denver, pp.3556-3562, Sept 2013,
[CrossRef] [SCOPUS Times Cited 25]


[13] W. le Roux, R. G. Harley, T. G. Habetler, "Detecting Rotor Faults in Low Power Permanent Magnet Synchronous Machines," IEEE Transactions on Power Electronics, vol.22, no.1, pp.322-328, 2007,
[CrossRef] [Web of Science Times Cited 182] [SCOPUS Times Cited 212]


[14] B. M. Ebrahimi, M. Javan Roshtkhari, J. Faiz, S. V. Khatami, "Advanced Eccentricity Fault Recognition in Permanent Magnet Synchronous Motors Using Stator Current Signature Analysis," IEEE Transactions on Industrial Electronics, vol.61, no.4, pp.2041-2052, April 2014,
[CrossRef] [Web of Science Times Cited 150] [SCOPUS Times Cited 168]


[15] J. Rosero, J. L. Romeral, J. Cusido, J. A. Ortega, A. Garcia, "Fault detection of eccentricity and bearing damage in a PMSM by means of wavelet transforms decomposition of the stator current," Proc. 2008 Twenty-Third Annual IEEE Applied Power Electronics Conference and Exposition, IEEE APEC 2008, Austin, pp.111-116, Feb. 2008,
[CrossRef] [Web of Science Times Cited 23] [SCOPUS Times Cited 33]


[16] C. P. Salomon, W. C. Santana, G. Lambert-Torres, L. E. Borges da Silva, E. L. Bonaldi, L. E. L. de Oliveira, "Comparison among Methods for Induction Motor Low-Intrusive Efficiency Evaluation Including a New AGT Approach with a Modified Stator Resistance", Energies, vol.11, no.4, pp.691-712, April 2018,
[CrossRef] [Web of Science Times Cited 10] [SCOPUS Times Cited 12]


[17] J. R. Cameron, W. T. Thomson, A. B. Dow, "Vibration and current monitoring for detecting airgap eccentricity in large induction motors," IEE Proceedings B - Electric Power Applications, vol.133, no.3, pp.155-163, May 1986,
[CrossRef] [Web of Science Times Cited 281] [SCOPUS Times Cited 418]


[18] J. Sottile, F. C. Trutt, A. W. Leedy, "Condition monitoring of brushless three-phase synchronous generators with stator winding or rotor circuit deterioration," IEEE Transactions on Industry Applications, vol.42, no.5, pp.1209-1215, Sep./Oct. 2006,
[CrossRef] [Web of Science Times Cited 55] [SCOPUS Times Cited 81]


[19] S. M. A. Cruz, A. J. M. Cardoso, "Stator winding fault diagnosis in three-phase synchronous and asynchronous motors, by the extended park’s vector approach," IEEE Transactions on Industry Applications vol.37, no.5, pp.1227-1233, Sep./Oct. 2001,
[CrossRef] [Web of Science Times Cited 301] [SCOPUS Times Cited 386]




References Weight

Web of Science® Citations for all references: 1,425 TCR
SCOPUS® Citations for all references: 1,849 TCR

Web of Science® Average Citations per reference: 71 ACR
SCOPUS® Average Citations per reference: 92 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2022-09-26 06:46 in 127 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2022
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: