Click to open the HelpDesk interface
AECE - Front page banner



JCR Impact Factor: 1.221
JCR 5-Year IF: 0.961
SCOPUS CiteScore: 2.5
Issues per year: 4
Current issue: Feb 2022
Next issue: May 2022
Avg review time: 77 days
Avg accept to publ: 48 days
APC: 300 EUR


Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


1,894,922 unique visits
Since November 1, 2009

Robots online now

SCOPUS CiteScore

SCOPUS CiteScore


SCImago Journal & Country Rank


Anycast DNS Hosting

 Volume 22 (2022)
     »   Issue 1 / 2022
 Volume 21 (2021)
     »   Issue 4 / 2021
     »   Issue 3 / 2021
     »   Issue 2 / 2021
     »   Issue 1 / 2021
 Volume 20 (2020)
     »   Issue 4 / 2020
     »   Issue 3 / 2020
     »   Issue 2 / 2020
     »   Issue 1 / 2020
 Volume 19 (2019)
     »   Issue 4 / 2019
     »   Issue 3 / 2019
     »   Issue 2 / 2019
     »   Issue 1 / 2019
 Volume 18 (2018)
     »   Issue 4 / 2018
     »   Issue 3 / 2018
     »   Issue 2 / 2018
     »   Issue 1 / 2018
  View all issues  


Clarivate Analytics published the InCites Journal Citations Report for 2020. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.221 (1.053 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.961.

SCOPUS published the CiteScore for 2020, computed by using an improved methodology, counting the citations received in 2017-2020 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering in 2020 is 2.5, better than all our previous results.

Release of the v3 version of AECE Journal website. We moved to a new server and implemented the latest cryptographic protocols to assure better compatibility with the most recent browsers. Our website accepts now only TLS 1.2 and TLS 1.3 secure connections.

Clarivate Analytics published the InCites Journal Citations Report for 2019. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.102 (1.023 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.734.

Starting on the 15th of June 2020 we wiil introduce a new policy for reviewers. Reviewers who provide timely and substantial comments will receive a discount voucher entitling them to an APC reduction. Vouchers (worth of 25 EUR or 50 EUR, depending on the review quality) will be assigned to reviewers after the final decision of the reviewed paper is given. Vouchers issued to specific individuals are not transferable.

Read More »


  4/2018 - 8

Real-Time Clustering of Large Geo-Referenced Data for Visualizing on Map

REZAEI, M. See more information about REZAEI, M. on SCOPUS See more information about REZAEI, M. on IEEExplore See more information about REZAEI, M. on Web of Science, FRANTI, P. See more information about FRANTI, P. on SCOPUS See more information about FRANTI, P. on SCOPUS See more information about FRANTI, P. on Web of Science
View the paper record and citations in View the paper record and citations in Google Scholar
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (3,681 KB) | Citation | Downloads: 677 | Views: 1,650

Author keywords
data visualization, clustering methods, web services, client-server systems, Internet

References keywords
visualization(21), data(17), clustering(13), information(12), graphics(8), tvcg(6), large(6), visual(5), mining(5), algorithm(5)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2018-11-30
Volume 18, Issue 4, Year 2018, On page(s): 63 - 74
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2018.04008
Web of Science Accession Number: 000451843400008
SCOPUS ID: 85058811278

Quick view
Full text preview
Displaying geo-referenced data in web mapping systems has become popular. However, most existing systems suffer from three annoying problems: (1) clutter when trying to visualize large amount of data; (2) slowness of transferring data over internet; (3) lack of support for dynamic queries. To solve these problems, we propose a real-time system using server-side clustering, transferring only the clustered data, and client-side visualization using existing map tools. As far as we know, there is no other scientific paper describing such real-time system that allows dynamic database queries without limiting to predefined queries. Experiments show that it can handle up to 1 million objects whereas all existing systems are either limited to pre-defined queries, or they support only a very small number of free parameters in the query whereas the proposed system has no such limitations.

References | Cited By  «-- Click to see who has cited this paper

[1] M. Nollenburg, "Geographic visualization," in Human-centered visualization environments, pp. 257-294, 2007.

[2] J. Delort, "Hierarchical cluster visualization in web mapping systems," 19th Int. Conf. World Wide Web, pp. 1241-1244, 2010.
[CrossRef] [SCOPUS Times Cited 10]

[3] J. K. Rayson, "Aggregate towers: Scale sensitive visualization and decluttering of geospatial data," IEEE Symposium on Information Visualization (Info Vis' 99), pp. 92-99, 1999.

[4] J. Korpi, P. Ahonen-Rainio, "Clutter reduction methods for point symbols in map mashups," The Cartographic Journal, vol. 50, no. 3, pp. 257-265, 2013.
[CrossRef] [Web of Science Times Cited 17] [SCOPUS Times Cited 22]

[5] Z. Liu, B. Iiang, J. Heer, "imMens: Real-time visual querying of big data," Computer Graphics Forum, vol. 32, no. 3pt4, pp. 421-430, 2013.
[CrossRef] [Web of Science Times Cited 149] [SCOPUS Times Cited 220]

[6] J.-Y. Delort, "Vizualizing large spatial datasets in interactive maps," Advanced Geographic Information Systems, Applications, and Services (GEOPROCESSING), pp. 33-38, 2010.
[CrossRef] [Web of Science Times Cited 11] [SCOPUS Times Cited 16]

[7] A. Jaffe, M. Naaman, T. Tassa, M. Davis, "Generating summaries and visualization for large collections of geo-referenced photographs," 8th ACM Int. Workshop on Multimedia Information Retrieval, pp. 89-98, 2006.
[CrossRef] [SCOPUS Times Cited 170]

[8] S. Ahern, M. Naaman, R. Nair, J. H. Yang, "World explorer: visualizing aggregate data from unstructured text in geo-referenced collections," 7th ACM/IEEE-CS Conf. Digital Libraries, pp. 1-10, 2007.
[CrossRef] [Web of Science Times Cited 105] [SCOPUS Times Cited 197]

[9] N. Elmqvist, J.-D. Fekete, "Hierarchical aggregation for information visualization: Overview, techniques, and design guidelines," IEEE Trans. on Visualization and Computer Graphics, vol. 16, no. 3, pp. 439-454, 2010.
[CrossRef] [Web of Science Times Cited 188] [SCOPUS Times Cited 266]

[10] I. Peca, H. Zhi, K. Vrotsou, N. Andrienko, G. Andrienko, "Kd-photomap: Exploring photographs in space and time," IEEE Conf. Visual Analytics Science and Technology (VAST), pp. 291-292, 2011.
[CrossRef] [SCOPUS Times Cited 5]

[11] M. Cristani, A. Perina, U. Castellani, V. Murino, "Content visualization and management of geo-located image databases," CHI'08 Extended Abstracts on Human Factors in Computing Systems, pp. 2823-2828, 2008.
[CrossRef] [SCOPUS Times Cited 9]

[12] F. Girardin, F. Calabrese, F. Dal Fiore, C. Ratti, J. Blat, "Digital footprinting: Uncovering tourists with user-generated content," IEEE Pervasive Computing, vol. 7, no. 4, 2008.
[CrossRef] [Web of Science Times Cited 221] [SCOPUS Times Cited 317]

[13] C. Lu, C. Chen, P. Cheng, "Clustering and visualizing geographic data using geo-tree," IEEE/WIC/ACM Int. Conf. Web Intelligence and Intelligent Agent Technology-Volume 01, pp. 479-482, 2011.
[CrossRef] [SCOPUS Times Cited 9]

[14] D. A. Keim, H. Kriegel, "VisDB: Database exploration using multidimensional visualization," IEEE Computer Graphics and Applications, vol. 14, no. 5, pp. 40-49, 1994.
[CrossRef] [Web of Science Times Cited 90] [SCOPUS Times Cited 186]

[15] F. H. Post, F. J. Post, T. Van Walsum, D. Silver, "Iconic techniques for feature visualization," 6th IEEE Conf. Visualization'95, p. 288, 1995.
[CrossRef] [Web of Science Times Cited 47]

[16] E. Keogh, L. Wei, X. Xi, S. Lonardi, J. Shieh, S. Sirowy, "Intelligent icons: Integrating lite-weight data mining and visualization into GUI operating systems," 6th Int. Conf. Data Mining, pp. 912-916, 2006.
[CrossRef] [SCOPUS Times Cited 36]

[17] N. Cao, D. Gotz, J. Sun, H. Qu, "Dicon: Interactive visual analysis of multidimensional clusters," IEEE Trans. on Visualization and Computer Graphics, vol. 17, no. 12, pp. 2581-2590, 2011.
[CrossRef] [Web of Science Times Cited 75] [SCOPUS Times Cited 83]

[18] D. Fisher, "Hotmap: Looking at geographic attention," IEEE Trans. on Visualization and Computer Graphics, vol. 13, no. 6, pp. 1184-1191, 2007.
[CrossRef] [Web of Science Times Cited 57] [SCOPUS Times Cited 99]

[19] A. Mayorga, M. Gleicher, "Splatterplots: Overcoming overdraw in scatter plots," IEEE Trans. on Visualization and Computer Graphics, vol. 19, no. 9, pp. 1526-1538, 2013.
[CrossRef] [Web of Science Times Cited 78] [SCOPUS Times Cited 88]

[20] B. Shneiderman, "The eyes have it: A task by data type taxonomy for information visualizations," IEEE Symposium on Visual Languages, pp. 336-343, 1996.
[CrossRef] [Web of Science Times Cited 1976]

[21] G. Ellis, A. Dix, "A taxonomy of clutter reduction for information visualisation," IEEE Trans. on Visualization and Computer Graphics, vol. 13, no. 6, pp. 1216-1223, 2007.
[CrossRef] [Web of Science Times Cited 212] [SCOPUS Times Cited 277]

[22] J.-D. Fekete, C. Plaisant, "Interactive information visualization of a million items," IEEE Symposium on Information Visualization, INFOVIS, pp. 117-124, 2002.
[CrossRef] [Web of Science Times Cited 104] [SCOPUS Times Cited 164]

[23] W. Wang, J. Yang, R. Muntz, "STING: A statistical information grid approach to spatial data mining," VLDB, vol. 97, pp. 186-195, 1997.

[24] R. Agrawal, J. Gehrke, D. Gunopulos, P. Raghavan, "Automatic subspace clustering of high dimensional data for data mining applications," ACM SIGMOD Int. Conf. Management of Data, vol. 27, no. 2, pp. 94-105, 1998.

[25] J. Dabernig, "Geocluster: server-side clustering for mapping in Drupal based on Geohash," M.Sc. Thesis, Faculty of Informatics, TU Wien University, Austria, 2013.

[26] L. Lins, J. T. Klosowski, C. Scheidegger, "Nanocubes for real-time exploration of spatiotemporal datasets," IEEE Trans. on Visualization and Computer Graphics, vol. 19, no. 12, pp. 2456-2465, 2013.
[CrossRef] [Web of Science Times Cited 130] [SCOPUS Times Cited 176]

[27] D. Nguyen, H. Schumann, "Taggram: Exploring geo-data on maps through a tag cloud-based visualization," 14th Int. Conf. Information Visualisation (IV), pp. 322-328, 2010.
[CrossRef] [Web of Science Times Cited 15] [SCOPUS Times Cited 21]

[28] R. T. Ng, J. Han, "CLARANS: A method for clustering objects for spatial data mining," IEEE Trans. on Knowledge and Data Engineering, vol. 14, no. 5, pp. 1003-1016, 2002.
[CrossRef] [Web of Science Times Cited 512] [SCOPUS Times Cited 717]

[29] D. R. Edla, P. K. Jana, "A grid clustering algorithm using cluster boundaries," World Congress on Information and Communication Technologies (WICT), pp. 254-259, 2012.
[CrossRef] [SCOPUS Times Cited 7]

[30] S. Na, L. Xumin, G. Yong, "Research on k-means clustering algorithm: An improved k-means clustering algorithm," Intelligent Information Technology and Security Informatics (IITSI), pp. 63-67, 2010.
[CrossRef] [Web of Science Times Cited 164] [SCOPUS Times Cited 281]

[31] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, "A density-based algorithm for discovering clusters in large spatial databases with noise," KDD, vol. 96, no. 34, pp. 226-231, 1996.

[32] B. Liu, "A fast density-based clustering algorithm for large databases," Int. Conf. Machine Learning and Cybernetics, pp. 996-1000, 2006.
[CrossRef] [SCOPUS Times Cited 51]

[33] L. Zhao, J. Yang, J. Fan, "A fast method of coarse density clustering for large data sets," 2nd Int. Conf. Biomedical Engineering and Informatics, BMEI'09, pp. 1-5, 2009.
[CrossRef] [SCOPUS Times Cited 2]

[34] P. Franti, O. Virmajoki, V. Hautamaki, "Fast agglomerative clustering using a k-nearest neighbor graph," IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 28, no. 11, pp. 1875-1881, 2006.
[CrossRef] [Web of Science Times Cited 166] [SCOPUS Times Cited 213]

[35] P. Franti, T. Kaukoranta, D. Shen, K. Chang, "Fast and memory efficient implementation of the exact PNN," IEEE Trans. on Image Processing, vol. 9, no. 5, pp. 773-777, 2000.
[CrossRef] [Web of Science Times Cited 43] [SCOPUS Times Cited 53]

[36] M. Steinbach, L. Ertoz, V. Kumar, "The challenges of clustering high dimensional data," New Directions in Statistical Physics: Springer, pp. 273-309, 2004.

[37] J. H. Ward Jr, "Hierarchical grouping to optimize an objective function," J. American Statistical Association, vol. 58, no. 301, pp. 236-244, 1963.
[CrossRef] [SCOPUS Times Cited 12522]

[38] W. Meert, "Clustering maps," M.Sc. Thesis, Faculty of Engineering, University of Leuven, Belgium, 2006.

[39] T. Zhang, R. Ramakrishnan, M. Livny, "BIRCH: an efficient data clustering method for very large databases," ACM Sigmod Record, vol. 25, no. 2, pp. 103-114, 1996.
[CrossRef] [SCOPUS Times Cited 3319]

References Weight

Web of Science® Citations for all references: 4,360 TCR
SCOPUS® Citations for all references: 19,536 TCR

Web of Science® Average Citations per reference: 109 ACR
SCOPUS® Average Citations per reference: 488 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2022-05-21 11:53 in 214 seconds.

Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2022
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania

All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.

Website loading speed and performance optimization powered by: