Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.825
JCR 5-Year IF: 0.752
SCOPUS CiteScore: 2.5
Issues per year: 4
Current issue: May 2023
Next issue: Aug 2023
Avg review time: 76 days
Avg accept to publ: 48 days
APC: 300 EUR


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,140,520 unique visits
859,207 downloads
Since November 1, 2009



Robots online now
bingbot


SCOPUS CiteScore

SCOPUS CiteScore


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 23 (2023)
 
     »   Issue 2 / 2023
 
     »   Issue 1 / 2023
 
 
 Volume 22 (2022)
 
     »   Issue 4 / 2022
 
     »   Issue 3 / 2022
 
     »   Issue 2 / 2022
 
     »   Issue 1 / 2022
 
 
 Volume 21 (2021)
 
     »   Issue 4 / 2021
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
 Volume 20 (2020)
 
     »   Issue 4 / 2020
 
     »   Issue 3 / 2020
 
     »   Issue 2 / 2020
 
     »   Issue 1 / 2020
 
 
  View all issues  


FEATURED ARTICLE

A Hybrid Deep Learning Approach for Intrusion Detection in IoT Networks, EMEC, M., OZCANHAN, M. H.
Issue 1/2022

AbstractPlus






LATEST NEWS

2022-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2021. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.825 (0.722 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.752.

2022-Jun-16
SCOPUS published the CiteScore for 2021, computed by using an improved methodology, counting the citations received in 2018-2021 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering in 2021 is 2.5, the same as for 2020 but better than all our previous results.

2021-Jun-30
Clarivate Analytics published the InCites Journal Citations Report for 2020. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.221 (1.053 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.961.

2021-Jun-06
SCOPUS published the CiteScore for 2020, computed by using an improved methodology, counting the citations received in 2017-2020 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering in 2020 is 2.5, better than all our previous results.

2021-Apr-15
Release of the v3 version of AECE Journal website. We moved to a new server and implemented the latest cryptographic protocols to assure better compatibility with the most recent browsers. Our website accepts now only TLS 1.2 and TLS 1.3 secure connections.

Read More »


    
 

  2/2019 - 6

Analysis of Downlink Uplink Decoupled Dense Heterogeneous Cellular Network based on User Association using Multi-Slope Path Loss Model

ALI, S. See more information about ALI, S. on SCOPUS See more information about ALI, S. on IEEExplore See more information about ALI, S. on Web of Science, ASLAM, M. I. See more information about  ASLAM, M. I. on SCOPUS See more information about  ASLAM, M. I. on SCOPUS See more information about ASLAM, M. I. on Web of Science, AHMED, I. See more information about AHMED, I. on SCOPUS See more information about AHMED, I. on SCOPUS See more information about AHMED, I. on Web of Science
 
View the paper record and citations in View the paper record and citations in Google Scholar
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,252 KB) | Citation | Downloads: 734 | Views: 1,680

Author keywords
cellular networks, probability distribution, propagation losses, stochastic processes, uplink

References keywords
uplink(13), link(12), networks(11), communication(10), cellular(10), path(7), loss(7), communications(7), analysis(7), propagation(6)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2019-05-31
Volume 19, Issue 2, Year 2019, On page(s): 45 - 52
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2019.02006
Web of Science Accession Number: 000475806300006
SCOPUS ID: 85066334149

Abstract
Quick view
Full text preview
Keeping in consideration the expected need of node densification of heterogeneous cellular networks in near future, it is imperative that more accurate path loss models be used when analyzing heterogeneous cellular networks performance in terms of user equipment association probability, coverage probability and spectral efficiency. In this paper, we have derived the generalized user equipment association probabilities expressions of a two-tier Dense Heterogeneous Cellular Network incorporating Downlink Uplink Decoupled technique using multi-slope path loss model, which incorporates the effect of physical environment on the path loss based on separation between transmitter and receiver. For analyzing network performance, we have considered dual-slope and tri-slope path loss models as special cases. The derived analytical expressions have been validated through network simulations and found in good agreement. The results have also been compared with conventional single-slope path loss model and it has been found that the decoupled uplink downlink association probability is higher when incorporating multi-slope path loss model as compared to single-slope path loss model.


References | Cited By  «-- Click to see who has cited this paper

[1] F. Jejdling, "Ericsson Mobility Report," Document ID: EAB-18:004510 Uen, June 2018.

[2] Cisco, "Cisco Visual Networking Index: Forecast and Trends,2017-2022," Document ID:1543280537836565, November 26, 2018

[3] J. Orlosky, K. Kiyokawa, H. Takemura, "Virtual and Augmented Reality on the 5G Highway," Journal of Information Processing, vol. 25, pp. 133-141, 2017.
[CrossRef] [SCOPUS Times Cited 63]


[4] K. Smiljkovikj, P. Popovski, L. Gavrilovska, "Analysis of the Decoupled Access for Downlink and Uplink in Wireless Heterogeneous Networks," IEEE Wireless Communication Letters, vol. 4, no. 2, pp. 173-176, 2015.
[CrossRef] [Web of Science Times Cited 89] [SCOPUS Times Cited 98]


[5] S. Singh, X. Zhang, J. G. Andrews, "Joint rate and SINR coverage analysis for decoupled uplink-downlink biased cell associations in HetNets," IEEE Transactions on Wireless Communication, vol. 14, no. 10, pp. 5360-5373, 2015.
[CrossRef] [Web of Science Times Cited 188] [SCOPUS Times Cited 211]


[6] M. N. Sial, J. Ahmed, "Analysis of K-tier 5G heterogeneous cellular network with dual-connectivity and uplink-downlink decoupled access," Journal on Telecommunication Systems, vol. 67, no. 4, pp. 669-685, 2018.
[CrossRef] [Web of Science Times Cited 13] [SCOPUS Times Cited 15]


[7] M. N. Sial, J. Ahmed, "A Realistic Uplink-Downlink Coupled and Decoupled User Association Technique for K-tier 5G HetNets," Arabian Journal for Science and Engineering, vol. 43, no. 6, pp 1-20, 2018.
[CrossRef] [Web of Science Times Cited 15] [SCOPUS Times Cited 16]


[8] M. Sial and J. Ahmed, A novel and realistic hybrid downlink-uplink coupled / decoupled access scheme for 5G HetNets. Turkish Journal on Electrical and Computer Engineering, vol. 25, no. 6, pp. 4457 - 4473, 2017.
[CrossRef] [Web of Science Times Cited 10] [SCOPUS Times Cited 10]


[9] F. Boccardi, J. Andrews, H. Elshaer, M. Dohler, S. Parkvall, P. Popovski, S. Singh, "Why to decouple the uplink and downlink in cellular networks and how to do it," IEEE Communication Magazine, vol. 54, no. 3, pp. 110-117, 2016.
[CrossRef] [Web of Science Times Cited 130] [SCOPUS Times Cited 142]


[10] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, J. C. Zhang, "What Will 5G Be?," IEEE Journal on Selected Areas in Communications, vol. 32, no. 6, pp. 1065-1082, 2014.
[CrossRef] [Web of Science Times Cited 5470] [SCOPUS Times Cited 6358]


[11] I. Chih-Lin, S. Han, Z. Xu, S. Wang, Q. Sun, Y. Chen, "New paradigm of 5G wireless internet," IEEE Journal on Selected Areas of Communication, vol. 34, no. 3, pp. 474-482, 2016.
[CrossRef] [Web of Science Times Cited 59] [SCOPUS Times Cited 107]


[12] M. Bacha, Y. Wu, B. Clerckx, "Downlink and uplink decoupling in two-tier heterogeneous networks with multi-antenna base stations," IEEE Transactions on Wireless Communication, vol. 16, no. 5, pp. 2760-2775, 2017.
[CrossRef] [Web of Science Times Cited 32] [SCOPUS Times Cited 36]


[13] L. Zhang, W. Nie, G. Feng, F.-C. Zheng, S. Qin, "Uplink performance improvement by decoupling uplink/downlink access in HetNets," IEEE Transactions on Vehicular Technology, vol. 66, no. 8, pp. 6862-6876, 2017.
[CrossRef] [Web of Science Times Cited 31] [SCOPUS Times Cited 34]


[14] H. Elshaer, M. N. Kulkarni, F. Boccardi, J. G. Andrews, M. Dohler, "Downlink and uplink cell association with traditional macrocells and millimeter wave small cells," IEEE Transactions on Wireless Communication, vol. 15, no. 9, pp. 6244-6258, 2016.
[CrossRef] [Web of Science Times Cited 154] [SCOPUS Times Cited 160]


[15] M. Di Renzo, P.Guan, "Stochastic geometry modeling and system-level analysis of uplink heterogeneous cellular networks with multi-antenna base stations," IEEE Transactions on Communication vol. 64, no. 6, pp. 2453-2476, 2016.
[CrossRef] [Web of Science Times Cited 61] [SCOPUS Times Cited 65]


[16] J. Park, S.-L. Kim, J. Zander, "Tractable resource management with uplink decoupled millimeter-wave overlay in ultra-dense cellular networks," IEEE Transactions on Wireless Communication, vol. 15, no. 6, pp. 4362-4379, 2016.
[CrossRef] [Web of Science Times Cited 77] [SCOPUS Times Cited 79]


[17] X. Sui, Z. Zhao, R. Li, H. Zhang, "Energy efficiency analysis of heterogeneous cellular networks with downlink and uplink decoupling," IEEE Global Communications Conference, pp. 1-7, 2015.
[CrossRef] [Web of Science Record]


[18] H. H. Xia, "A simplified analytical model for predicting path loss in urban and suburban environments," IEEE Transactions on Vehicular Technology, vol. 46, no. 4, pp. 1040-1046, 1997.
[CrossRef] [Web of Science Times Cited 82] [SCOPUS Times Cited 103]


[19] V. Erceg, L. J. Greenstein, S. Y. Tjandra, S. R. Parkoff, A. Gupta, B. Kulic, A. A. Julius, R. Bianchi, "An empirically based path loss model for wireless channels in suburban environments," IEEE Journal on Selected Areas in Communications, vol. 17, no. 7, pp. 1205-1211, 1999.
[CrossRef] [Web of Science Times Cited 665] [SCOPUS Times Cited 861]


[20] T. K. Sarkar, J. Zhong, K. Kyungjung, A. Medouri, M. Salazar-Palma, "A survey of various propagation models for mobile communication," IEEE Antennas and Propagation Magazine, vol. 45, no. 3, pp. 51-82, 2003.
[CrossRef] [Web of Science Times Cited 500] [SCOPUS Times Cited 706]


[21] T. S. Rappaport, L. B. Milstein, "Effects of radio propagation path loss on DS-CDMA cellular frequency reuse efficiency for the reverse channel," IEEE Transactions on Vehicular Technology, vol. 41, no. 3, pp. 231-242, 1992.
[CrossRef] [Web of Science Times Cited 59] [SCOPUS Times Cited 81]


[22] H. Xia, H. L. Bertoni, L. R. Maciel, A. Lindsay-Stewart, R. Rowe, "Radio propagation characteristics for line-of-sight microcellular and personal communications," IEEE Transactions on Antennas and Propagation, vol. 41, no. 10, pp. 1439-1447, 1993.
[CrossRef] [Web of Science Times Cited 153] [SCOPUS Times Cited 207]


[23] V. Erceg, S. Ghassemzadeh, M. Taylor, D. Li, D. L. Schilling, "Urban/suburban out-of-sight propagation modeling," IEEE Communications Magazine, vol. 30, no. 6, pp. 56-61, 1992.
[CrossRef] [Web of Science Times Cited 56] [SCOPUS Times Cited 90]


[24] M. J. Feuerstein, K. L. Blackard, T. S. Rappaport, S. Y. Seidel, H. H. Xia, "Path loss, delay spread, and outage models as functions of antenna height for microcellular system design," IEEE Transactions on Vehicular Technology, vol. 43, no. 3, pp. 487-498, 1994.
[CrossRef] [Web of Science Times Cited 182] [SCOPUS Times Cited 226]


[25] A. K. Gupta, X. Zhang, J. G. Andrews, "SINR and Throughput Scaling in Ultradense Urban Cellular Networks," IEEE Wireless Communications Letters, vol. 4, no. 6, pp. 605-608, 2015.
[CrossRef] [Web of Science Times Cited 51] [SCOPUS Times Cited 61]


[26] X. Zhang, J. G.Andrews, "Downlink Cellular Network Analysis With Multi-Slope Path Loss Models," IEEE Transactions on Communication, vol. 63, no. 5, pp. 1881-1894, 2015.
[CrossRef] [Web of Science Times Cited 222] [SCOPUS Times Cited 237]


[27] V. M. Nguyen, M. Kountouris, "Coverage and capacity scaling laws in downlink ultra-dense cellular networks," IEEE International Conference on Communications, pp. 1-7, 2016.
[CrossRef] [Web of Science Record] [SCOPUS Times Cited 11]


[28] A. A. Ammouri, J. G. Andrews, F. Baccelli, "A Unified Asymptotic Analysis of Area Spectral Efficiency in Ultradense Cellular Networks," IEEE Transactions on Information Theory, pp. 1-1, 2018.
[CrossRef] [Web of Science Times Cited 31] [SCOPUS Times Cited 36]


[29] B. Yang, G. Mao, M. Ding, X. Ge, X. Tao, "Dense Small Cell Networks: From Noise-Limited to Dense Interference-Limited," IEEE Transactions on Vehicular Technology, vol. 67, no. 5, pp. 4262-4277, 2018.
[CrossRef] [Web of Science Times Cited 45] [SCOPUS Times Cited 48]


[30] H. Munir, S. A. Hassan, H. Pervaiz, Q. Ni, L. Musavian, "Resource optimization in multi-tier HetNets exploiting multi-slope path loss model," IEEE Access vol. 5, pp. 8714-8726, 2017.
[CrossRef] [Web of Science Times Cited 18] [SCOPUS Times Cited 20]


[31] H. Munir, S. A. Hassan, H. Pervaiz, Q. Ni, L. Musavian, "User association in 5G heterogeneous networks exploiting multi-slope path loss model," Recent Trends in Telecommunications Research, pp. 1-5, 2017.
[CrossRef] [SCOPUS Times Cited 11]




References Weight

Web of Science® Citations for all references: 8,393 TCR
SCOPUS® Citations for all references: 10,092 TCR

Web of Science® Average Citations per reference: 262 ACR
SCOPUS® Average Citations per reference: 315 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2023-06-04 16:19 in 166 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2023
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: