Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.700
JCR 5-Year IF: 0.700
SCOPUS CiteScore: 1.8
Issues per year: 4
Current issue: Aug 2024
Next issue: Nov 2024
Avg review time: 55 days
Avg accept to publ: 60 days
APC: 300 EUR


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,824,849 unique visits
1,118,590 downloads
Since November 1, 2009



Robots online now
Googlebot
MJ12bot


SCOPUS CiteScore

SCOPUS CiteScore


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 24 (2024)
 
     »   Issue 3 / 2024
 
     »   Issue 2 / 2024
 
     »   Issue 1 / 2024
 
 
 Volume 23 (2023)
 
     »   Issue 4 / 2023
 
     »   Issue 3 / 2023
 
     »   Issue 2 / 2023
 
     »   Issue 1 / 2023
 
 
 Volume 22 (2022)
 
     »   Issue 4 / 2022
 
     »   Issue 3 / 2022
 
     »   Issue 2 / 2022
 
     »   Issue 1 / 2022
 
 
 Volume 21 (2021)
 
     »   Issue 4 / 2021
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
  View all issues  


FEATURED ARTICLE

Analysis of the Hybrid PSO-InC MPPT for Different Partial Shading Conditions, LEOPOLDINO, A. L. M., FREITAS, C. M., MONTEIRO, L. F. C.
Issue 2/2022

AbstractPlus






LATEST NEWS

2024-Jun-20
Clarivate Analytics published the InCites Journal Citations Report for 2023. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.700 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.600.

2023-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2022. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.800 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 1.000.

2023-Jun-05
SCOPUS published the CiteScore for 2022, computed by using an improved methodology, counting the citations received in 2019-2022 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2022 is 2.0. For "General Computer Science" we rank #134/233 and for "Electrical and Electronic Engineering" we rank #478/738.

2022-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2021. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.825 (0.722 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.752.

2022-Jun-16
SCOPUS published the CiteScore for 2021, computed by using an improved methodology, counting the citations received in 2018-2021 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2021 is 2.5, the same as for 2020 but better than all our previous results.

Read More »


    
 

  3/2019 - 11

Estimation of Spatial Channel Model in a Wireless Ultra-Wide-Area Backhaul Network using the Deterministic Ray Tube Method

YUN, D. See more information about YUN, D. on SCOPUS See more information about YUN, D. on IEEExplore See more information about YUN, D. on Web of Science, KIM, Y. See more information about  KIM, Y. on SCOPUS See more information about  KIM, Y. on SCOPUS See more information about KIM, Y. on Web of Science, JUNG, I. See more information about  JUNG, I. on SCOPUS See more information about  JUNG, I. on SCOPUS See more information about JUNG, I. on Web of Science, JUNG, H. See more information about  JUNG, H. on SCOPUS See more information about  JUNG, H. on SCOPUS See more information about JUNG, H. on Web of Science, KANG, H. See more information about KANG, H. on SCOPUS See more information about KANG, H. on SCOPUS See more information about KANG, H. on Web of Science
 
View the paper record and citations in View the paper record and citations in Google Scholar
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,734 KB) | Citation | Downloads: 790 | Views: 2,127

Author keywords
channel models, microwave propagation, mobile communication, ray tracing, statistical analysis

References keywords
channel(8), propagat(5), propagation(4), model(4), antennas(4)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2019-08-31
Volume 19, Issue 3, Year 2019, On page(s): 91 - 96
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2019.03011
Web of Science Accession Number: 000486574100011
SCOPUS ID: 85072232537

Abstract
Quick view
Full text preview
This paper presents an analysis of channel characteristics in a wireless ultra-wide-area backhaul network based on deterministic ray tube (DRT) ray tracing. The accurate knowledge of spatial temporal channel characteristics enables system-level simulations of wireless communication systems. However, few papers have been published on the analysis of channel characteristics in an ultra-wide-area backhaul network, which is one of a promising fifth generation (5G) scheme. In this paper, we conduct an analysis of the outdoor propagation environment using the DRT ray tracing. Spatial temporal channel parameters are then calculated using linear regression and multipath clustering algorithm. The proposed analysis scheme is verified by comparing the results of existing scenario with the reference spatial channel model (SCM) parameters. Channel characteristics in the wireless ultra-wide-area backhaul scenarios are then investigated.


References | Cited By  «-- Click to see who has cited this paper

[1] ITU-R, Recommendation ITU-R M.2083-0, Aug. 2015.

[2] Z. Zhang, X. Wang, K. Long, A. V. Vasilakos, and L. Hanzo, "Large-scale MIMO-based wireless backhaul in 5G networks," IEEE Wireless Commun., vol. 22, no. 5, pp. 58-66, Oct. 2015.
[CrossRef] [SCOPUS Times Cited 95]


[3] S. W. Go, J. K. Park, H. Kim, D. J. Yun, S. W. Keum, J. Y. Lee, and D. H. Cho, "Hybrid beamforming for large scale array antenna in wireless ultra-wide-area backhaul network," IEEE 85th Vehicular Technol. Conf. Spring 2017 (VTC Spring), Sydney, Australia, Jun. 2017.
[CrossRef] [SCOPUS Times Cited 1]


[4] A. F. Molisch, M. Steinbauer, M. Toeltsch, E. Bonek, and R. S. Thoma, "Capacity of MIMO systems based on measured wireless channels," IEEE J. Select. Areas Commun., vol. 20, pp. 561-569, Apr. 2002.
[CrossRef] [Web of Science Times Cited 209] [SCOPUS Times Cited 281]


[5] 3GPP TR 36.873. Study on 3D channel model for LTE (release 12), V 12.2.0. July 2015.

[6] H. S. Jo and J. G. Yook, "Path loss characteristics for IMT-advanced systems in residential and street environments," IEEE Antennas Wireless Propagat. Lett., vol. 9, pp. 867-871, 2010.
[CrossRef] [Web of Science Times Cited 19] [SCOPUS Times Cited 24]


[7] P. H. Wanderley and M. A. Terada, "Assessment of the applicability of the Ikegami propagation model in modern wireless communication scenarios," J. Electromagn. Waves Appl., vol. 26, pp. 1483-1491, Jul. 2012.
[CrossRef] [Web of Science Times Cited 2] [SCOPUS Times Cited 3]


[8] Y. Yu, J. Zhang, P. J. Smith, and P. A. Dmochowski, "Theoretical analysis of 3-D channel spatial correlation and capacity," IEEE Commun. Lett, vol. 22, no. 2, pp. 420-423, Feb. 2018.
[CrossRef] [Web of Science Times Cited 10] [SCOPUS Times Cited 10]


[9] R. Hoppe, J. Ramuh, H. Buddendick, and G. Wolfle, "Comparison of MIMO channel characteristics computed by 3D Ray tracing and statistical models," in Proc. Eur. Conf. Antenna Propagat. (EuCAP), pp. 1-5, Nov. 2007.
[CrossRef] [SCOPUS Times Cited 2]


[10] M. S. Choi, H. K. Park, Y. H. Heo, S. H. Oh, and N. H. Myung, "A 3-D propagation model considering building transmission loss for indoor wireless communications," ETRI J., vol. 28, no. 2, pp. 247-249, Apr. 2006.
[CrossRef] [Web of Science Times Cited 9] [SCOPUS Times Cited 10]


[11] C. Gustafson, K. Haneda, S. Wyne, and F. Tufvesson, "On mm-wave multipath clustering and channel modeling," IEEE Trans. Antennas Propagat., vol. 62, no. 3, pp. 1445-1455, Mar. 2014.
[CrossRef] [Web of Science Times Cited 218] [SCOPUS Times Cited 240]


[12] J. Ko, S. U. Lee, Y. S. Kim, and D. J. Park, "Measurements and analyses of 28 GHz indoor channel propagation based on a synchronized channel sounder using directional antennas," J. Electromagn. Waves Appl., vol. 30, pp. 2039-2054, Oct. 2016.
[CrossRef] [Web of Science Times Cited 7] [SCOPUS Times Cited 8]


[13] S. Hur, S. Baek, B. Kim, J. Park, A. F. Molisch, K. Haneda, and M. Peter, "28 GHz channel modeling using 3D ray-tracing in urban environments," in Proc. Eur. Conf. Antenna Propagat. (EuCAP), pp. 1-5, Apr. 2015.

[14] S. Hur, S. Baek, B. Kim, Y. Chang, A. F. Molisch, T. S. Rappaport, K. Haneda, and J. Park, "Proposal on millimeter-wave channel modeling for 5G cellular system," IEEE J. Select. Topics Signal Process., vol. 10, no. 3, pp. 454-469, Apr. 2016.
[CrossRef] [Web of Science Times Cited 258] [SCOPUS Times Cited 308]


[15] H. W. Son and N. H. Myung, "A deterministic ray tube method for microcellular wave propagation prediction model," IEEE Trans. Antennas Propagat., vol. 47, no. 8, pp. 1344-1350, Aug. 1999.
[CrossRef] [Web of Science Times Cited 81] [SCOPUS Times Cited 125]


[16] S. Y. Kim, "Review of the hidden rays of diffraction," J. Electromagn. Eng. Sci., vol. 15, no. 1, pp. 1-5, Jan. 2015.
[CrossRef] [Web of Science Times Cited 18]


[17] The ministry of land, infrastructure, and transport in Korea, space information open platform [Online] Available: Temporary on-line reference link removed - see the PDF document

[18] S. C. Chapra, Applied Numerical Methods with MATLAB for Engineers and Scientists. McGraw-Hill, pp.284-312, 2005.

[19] D. J. Kim, Y. W. Park, and D. J. Park, "A novel validity index for determination of the optimal number of clusters," IEICE Trans. Inf. Syst., vol. E84-D, no. 2, pp. 281-285, 2001.

[20] N. Czink, P. Cera, J. Salo, E. Bonek, J. P. Nuutinen, and J. Ylitalo, "Improving clustering performance using multipath component distance," Electron. Lett., vol. 42, no. 1, pp.33-35, Jan. 2006.
[CrossRef] [Web of Science Times Cited 52] [SCOPUS Times Cited 83]


References Weight

Web of Science® Citations for all references: 883 TCR
SCOPUS® Citations for all references: 1,190 TCR

Web of Science® Average Citations per reference: 44 ACR
SCOPUS® Average Citations per reference: 60 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2024-10-05 21:07 in 96 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2024
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: 


DNS Made Easy