Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.825
JCR 5-Year IF: 0.752
SCOPUS CiteScore: 2.5
Issues per year: 4
Current issue: Aug 2022
Next issue: Nov 2022
Avg review time: 77 days
Avg accept to publ: 48 days
APC: 300 EUR


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

1,973,428 unique visits
787,794 downloads
Since November 1, 2009



Robots online now
Googlebot
PetalBot


SCOPUS CiteScore

SCOPUS CiteScore


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 22 (2022)
 
     »   Issue 3 / 2022
 
     »   Issue 2 / 2022
 
     »   Issue 1 / 2022
 
 
 Volume 21 (2021)
 
     »   Issue 4 / 2021
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
 Volume 20 (2020)
 
     »   Issue 4 / 2020
 
     »   Issue 3 / 2020
 
     »   Issue 2 / 2020
 
     »   Issue 1 / 2020
 
 
 Volume 19 (2019)
 
     »   Issue 4 / 2019
 
     »   Issue 3 / 2019
 
     »   Issue 2 / 2019
 
     »   Issue 1 / 2019
 
 
  View all issues  








LATEST NEWS

2022-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2021. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.825 (0.722 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.752.

2022-Jun-16
SCOPUS published the CiteScore for 2021, computed by using an improved methodology, counting the citations received in 2018-2021 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering in 2021 is 2.5, the same as for 2020 but better than all our previous results.

2021-Jun-30
Clarivate Analytics published the InCites Journal Citations Report for 2020. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.221 (1.053 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.961.

2021-Jun-06
SCOPUS published the CiteScore for 2020, computed by using an improved methodology, counting the citations received in 2017-2020 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering in 2020 is 2.5, better than all our previous results.

2021-Apr-15
Release of the v3 version of AECE Journal website. We moved to a new server and implemented the latest cryptographic protocols to assure better compatibility with the most recent browsers. Our website accepts now only TLS 1.2 and TLS 1.3 secure connections.

Read More »


    
 

  1/2020 - 6

Coarse-to-fine Method for Vision-based Pedestrian Traffic Light Detection

WU, X.-H. See more information about WU, X.-H. on SCOPUS See more information about WU, X.-H. on IEEExplore See more information about WU, X.-H. on Web of Science, HU, R. See more information about  HU, R. on SCOPUS See more information about  HU, R. on SCOPUS See more information about HU, R. on Web of Science, BAO, Y.-Q. See more information about BAO, Y.-Q. on SCOPUS See more information about BAO, Y.-Q. on SCOPUS See more information about BAO, Y.-Q. on Web of Science
 
View the paper record and citations in View the paper record and citations in Google Scholar
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,505 KB) | Citation | Downloads: 577 | Views: 1,149

Author keywords
gaussian mixture model, multi-layer neural network, boosting, object detection, computer vision

References keywords
detection(7), traffic(6), recognition(5), neural(5), time(4), real(4), light(4), comput(4)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2020-02-28
Volume 20, Issue 1, Year 2020, On page(s): 43 - 48
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2020.01006
Web of Science Accession Number: 000518392600006
SCOPUS ID: 85083705725

Abstract
Quick view
Full text preview
Pedestrian traffic light detection is an important technique of the navigation system for the visually impaired during road crossing. In this paper, a three-stage coarse-to-fine method for pedestrian traffic light detection is proposed. The proposed method is mainly divided into two processes, the training process and the detection process. In the training process, the Gaussian mixture model (GMM) is adopted to determine the parameters of the filter on stage I. The classifier on stage II is trained by a modified convolutional neural network (CNN) to capture features in each channel of the CIELAB color space. The classifier on stage III is trained by the adaptive boosting (AdaBoost) algorithm with Haar features. In the detection process, firstly the board filter is adopted to generate candidate regions of pedestrian traffic lights. Secondly, these candidate regions are detected in multiple scales by the CNN-based classifier with fixed size. Finally the AdaBoost-based classifier is adopted for refinement detection. Testing results verify the effectiveness of the proposed method.


References | Cited By  «-- Click to see who has cited this paper

[1] E. M. Ball, "Electronic Travel Aids: An Assessment," in Assistive Technology for Visually Impaired and Blind People, M. A. Hersh and M. A. Johnson, Eds. London: Springer London, 2008, pp. 289-321.
[CrossRef]


[2] J. Aranda and P. Mares, "Visual System to Help Blind People to Cross the Street," Berlin, Heidelberg, 2004, pp. 454-461: Springer Berlin Heidelberg.
[CrossRef] [SCOPUS Times Cited 16]


[3] J. Roters, X. Jiang, and K. Rothaus, "Recognition of Traffic Lights in Live Video Streams on Mobile Devices," IEEE Transactions on Circuits and Systems for Video Technology, vol. 21, no. 10, pp. 1497-1511, 2011.
[CrossRef] [Web of Science Times Cited 26] [SCOPUS Times Cited 37]


[4] S. Mascetti, D. Ahmetovic, A. Gerino, C. Bernareggi, M. Busso, and A. Rizzi, "Robust traffic lights detection on mobile devices for pedestrians with visual impairment," Spec. Issue Assist. Comput. Vis. Robot. - Assist. Solut. Mobil. Commun. HMI, vol. 148, pp. 123-135, 2016.
[CrossRef] [Web of Science Times Cited 30] [SCOPUS Times Cited 45]


[5] W. Liu et al., "Real-Time Traffic Light Recognition Based on Smartphone Platforms," IEEE Transactions on Circuits and Systems for Video Technology, vol. 27, no. 5, pp. 1118-1131, 2017.
[CrossRef] [Web of Science Times Cited 10] [SCOPUS Times Cited 12]


[6] X. H. Wu, R. Hu, and Y. Q. Bao, "Fast Vision-Based Pedestrian Traffic Light Detection," in IEEE Conference on Multimedia Information Processing and Retrieval, 2018, pp. 214-215.
[CrossRef] [SCOPUS Times Cited 7]


[7] V. John, K. Yoneda, Z. Liu, and S. Mita, "Saliency Map Generation by the Convolutional Neural Network for Real-Time Traffic Light Detection Using Template Matching," IEEE Trans. Comput. Imaging, vol. 1, no. 3, pp. 159-173, Sep. 2015.
[CrossRef]


[8] X. Li, H. Ma, X. Wang, and X. Zhang, "Traffic Light Recognition for Complex Scene With Fusion Detections," IEEE Transactions on Intelligent Transportation Systems, vol. 19, no. 1, pp. 199-208, 2018.
[CrossRef] [Web of Science Times Cited 34] [SCOPUS Times Cited 47]


[9] X. Xiang, N. Lv, M. Zhai, and A. E. Saddik, "Real-Time Parking Occupancy Detection for Gas Stations Based on Haar-AdaBoosting and CNN," IEEE Sens. J., vol. 17, no. 19, pp. 6360-6367, Oct. 2017.
[CrossRef] [Web of Science Times Cited 18] [SCOPUS Times Cited 31]


[10] D. A. Reynolds and R. C. Rose, "Robust text-independent speaker identification using Gaussian mixture speaker models," IEEE Trans. Speech Audio Process., vol. 3, no. 1, pp. 72-83, Jan. 1995.
[CrossRef] [Web of Science Times Cited 1693] [SCOPUS Times Cited 2316]


[11] C. He, H. Fu, C. Guo, W. Luk, and G. Yang, "A Fully-Pipelined Hardware Design for Gaussian Mixture Models," IEEE Trans. Comput., vol. 66, no. 11, pp. 1837-1850, Nov. 2017.
[CrossRef] [Web of Science Times Cited 9] [SCOPUS Times Cited 13]


[12] Y. LeCun et al., "Backpropagation Applied to Handwritten Zip Code Recognition," Neural Computation, vol. 1, no. 4, pp. 541-551, 1989.
[CrossRef] [Web of Science Times Cited 4679]


[13] P. Viola and M. J. Jones, "Robust Real-Time Face Detection," Int. J. Comput. Vis., vol. 57, no. 2, pp. 137-154, May 2004.
[CrossRef] [Web of Science Times Cited 7737] [SCOPUS Times Cited 10161]


[14] H. A. Rowley, S. Baluja, and T. Kanade, "Neural network-based face detection," IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 1, pp. 23-38, Jan. 1998.
[CrossRef] [Web of Science Times Cited 2002] [SCOPUS Times Cited 2685]


[15] C. Chih-Chung and L. Chih-Jen, "LIBSVM: A library for support vector machines," ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, pp. 1-27, 2011.
[CrossRef] [Web of Science Times Cited 24735] [SCOPUS Times Cited 24662]


[16] N. Dalal and B. Triggs, "Histograms of oriented gradients for human detection," in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), 2005, vol. 1, pp. 886-893 vol. 1
[CrossRef] [Web of Science Times Cited 14919] [SCOPUS Times Cited 25602]


[17] T. Ojala, M. Pietikainen, and T. Maenpaa, "Multiresolution gray-scale and rotation invariant texture classification with local binary patterns," IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7, pp. 971-987, Jul. 2002.
[CrossRef] [Web of Science Times Cited 9529] [SCOPUS Times Cited 12139]


[18] F. Schwenker, H. A. Kestler, and G. Palm, "Three learning phases for radial-basis-function networks," Neural Netw., vol. 14, no. 4, pp. 439-458, 2001.
[CrossRef] [Web of Science Times Cited 323] [SCOPUS Times Cited 389]


[19] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks," Commun. ACM, vol. 60, no. 6, pp. 84-90, 2017.
[CrossRef] [SCOPUS Times Cited 8190]




References Weight

Web of Science® Citations for all references: 65,744 TCR
SCOPUS® Citations for all references: 86,352 TCR

Web of Science® Average Citations per reference: 3,287 ACR
SCOPUS® Average Citations per reference: 4,318 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2022-09-27 17:41 in 125 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2022
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: