Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 1.221
JCR 5-Year IF: 0.961
SCOPUS CiteScore: 2.5
Issues per year: 4
Current issue: Aug 2021
Next issue: Nov 2021
Avg review time: 88 days


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

1,776,469 unique visits
596,893 downloads
Since November 1, 2009



Robots online now
bingbot
PetalBot


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 21 (2021)
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
 Volume 20 (2020)
 
     »   Issue 4 / 2020
 
     »   Issue 3 / 2020
 
     »   Issue 2 / 2020
 
     »   Issue 1 / 2020
 
 
 Volume 19 (2019)
 
     »   Issue 4 / 2019
 
     »   Issue 3 / 2019
 
     »   Issue 2 / 2019
 
     »   Issue 1 / 2019
 
 
 Volume 18 (2018)
 
     »   Issue 4 / 2018
 
     »   Issue 3 / 2018
 
     »   Issue 2 / 2018
 
     »   Issue 1 / 2018
 
 
 Volume 17 (2017)
 
     »   Issue 4 / 2017
 
     »   Issue 3 / 2017
 
     »   Issue 2 / 2017
 
     »   Issue 1 / 2017
 
 
  View all issues  








LATEST NEWS

2021-Jun-30
Clarivate Analytics published the InCites Journal Citations Report for 2020. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.221 (1.053 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.961.

2021-Jun-06
SCOPUS published the CiteScore for 2020, computed by using an improved methodology, counting the citations received in 2017-2020 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering in 2020 is 2.5, better than all our previous results.

2021-Apr-15
Release of the v3 version of AECE Journal website. We moved to a new server and implemented the latest cryptographic protocols to assure better compatibility with the most recent browsers. Our website accepts now only TLS 1.2 and TLS 1.3 secure connections.

2020-Jun-29
Clarivate Analytics published the InCites Journal Citations Report for 2019. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.102 (1.023 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.734.

2020-Jun-11
Starting on the 15th of June 2020 we wiil introduce a new policy for reviewers. Reviewers who provide timely and substantial comments will receive a discount voucher entitling them to an APC reduction. Vouchers (worth of 25 EUR or 50 EUR, depending on the review quality) will be assigned to reviewers after the final decision of the reviewed paper is given. Vouchers issued to specific individuals are not transferable.

Read More »


    
 

  2/2020 - 13

Convolutional Neural Network Based Prediction of Conversion from Mild Cognitive Impairment to Alzheimer's Disease: A Technique using Hippocampus Extracted from MRI

MUKHTAR, G. See more information about MUKHTAR, G. on SCOPUS See more information about MUKHTAR, G. on IEEExplore See more information about MUKHTAR, G. on Web of Science, FARHAN, S. See more information about FARHAN, S. on SCOPUS See more information about FARHAN, S. on SCOPUS See more information about FARHAN, S. on Web of Science
 
View the paper record and citations in View the paper record and citations in Google Scholar
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,466 KB) | Citation | Downloads: 329 | Views: 1,038

Author keywords
artificial neural networks, computer aided diagnosis, image analysis, image classification, pattern recognition

References keywords
alzheimer(35), disease(29), cognitive(13), prediction(12), mild(12), impairment(12), conversion(11), classification(10), brain(10), neuroimage(9)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2020-05-31
Volume 20, Issue 2, Year 2020, On page(s): 113 - 122
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2020.02013
Web of Science Accession Number: 000537943500013
SCOPUS ID: 85087437924

Abstract
Quick view
Full text preview
Alzheimer's disease (AD) is an irreversible neurodegenerative disorder. Mild Cognitive Impairment (MCI) is a prodromal stage of AD and its identification is very crucial for early treatment. MCI to AD conversion is of imperative concern in current Alzheimer's research. In this study, we have investigated the conversion from MCI to AD using different types of features. The impact of structural changes in entire brain tissues captured through MRI, genetics, neuropsychological assessment scores and their combination are investigated. Computational cost can be significantly reduced by examining only the hippocampi region, atrophy of which is visible in the earliest stages of the disease. We proposed a CNN based deep learning approach for the prediction of conversion from MCI to AD using above mentioned features. Highest accuracy is achieved when left hippocampus is used as a region of interest (ROI). The proposed technique outperforms the other state of the art methods, while maintaining a low computational cost. The main contribution of the research lies in the fact that only a single slice based small region of MRI is used resulting in an outstanding performance. The accuracy, sensitivity and specificity achieved are 94%, 92% and 96% respectively.


References | Cited By  «-- Click to see who has cited this paper

[1] Alzheimer's Association, "2018 Alzheimer's disease facts and figures," Alzheimer's & Dementia, vol. 14, pp. 367-429, 2018.
[CrossRef] [Web of Science Times Cited 532] [SCOPUS Times Cited 1123]


[2] R. A. Sperling, P. S. Aisen, L. A. Beckett, D. A. Bennett, S. Craft, et al., "Toward defining the preclinical stages of Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease," Alzheimer's & Dementia, vol. 7, pp. 280-292, 2011.
[CrossRef] [Web of Science Times Cited 3801] [SCOPUS Times Cited 4072]


[3] C. Cabral, P. M. Morgado, D. C. Costa, M. Silveira, and ADNI, "Predicting conversion from MCI to AD with FDG-PET brain images at different prodromal stages," Computers in Biology and Medicine, vol. 58, pp. 101-109, 2015.
[CrossRef] [Web of Science Times Cited 54] [SCOPUS Times Cited 56]


[4] S. Farhan, M. A. Fahiem, and H. Tauseef, "An Ensemble-of-Classifiers Based Approach for Early Diagnosis of Alzheimer's Disease: Classification Using Structural Features of Brain Images," Computational and Mathematical Methods in Medicine, vol. 2014, pp. 11, September 2014.
[CrossRef] [Web of Science Times Cited 32] [SCOPUS Times Cited 51]


[5] A. Khazaee, A. Ebrahimzadeh, A. Babajani-Feremi, and ADNI, "Classification of patients with MCI and AD from healthy controls using directed graph measures of resting-state fMRI," Behavioural Brain Research, vol. 322, pp. 339-350, 2017.
[CrossRef] [Web of Science Times Cited 86] [SCOPUS Times Cited 93]


[6] J. Ding and Q. Huang, "Prediction of MCI to AD conversion using Laplace Eigenmaps learned from FDG and MRI images of AD patients and healthy controls," 2nd International Conference on Image, Vision and Computing (ICIVC), 2017, pp. 660-664.

[7] L. D. Declercq, R. Vandenberghe, K. V. Laere, A. Verbruggen, and G. Bormans, "Drug development in Alzheimer's disease: the contribution of PET and SPECT," Frontiers in Pharmacology, vol. 7, pp. 88, 2016.
[CrossRef] [Web of Science Times Cited 18] [SCOPUS Times Cited 17]


[8] I. Beheshti, H. Demirel, H. Matsuda, and ADNI, "Classification of Alzheimer's disease and prediction of mild cognitive impairment-to-Alzheimer's conversion from structural magnetic resource imaging using feature ranking and a genetic algorithm," Computers in Biology and Medicine, pp. 109-119, 2017.
[CrossRef] [Web of Science Times Cited 89] [SCOPUS Times Cited 108]


[9] J. E. Arco, J. Ramirez, C. G. Puntonet, J. M. Gorriz, and M. Ruz, "Improving short-term prediction from MCI to AD by applying searchlight analysis," IEEE 13th International Symposium on Biomedical Imaging (ISBI), 2016, pp. 10-13.
[CrossRef] [Web of Science Times Cited 3] [SCOPUS Times Cited 3]


[10] F. Previtali, P. Bertolazzi, G. Felici, and E. Weitschek, "A novel method and software for automatically classifying Alzheimer's disease patients by magnetic resonance imaging analysis," Computer Methods and Programs in Biomedicine, vol. 143, pp. 89-95, 2017.
[CrossRef] [Web of Science Times Cited 13] [SCOPUS Times Cited 24]


[11] T. Pereira, A. Mendon, F. Ferreira, S. Madeira, and M. Guerreiro, "Towards a reliable prediction of conversion from mild cognitive impairment to Alzheimer's disease: stepwise learning using time windows," in Medical Informatics and Healthcare, 2017, pp. 19-26.

[12] S.-H. Wang, Y. Zhang, Y.-J. Li, W.-J. Jia, F.-Y. Liu, et al., "Single slice based detection for Alzheimer's disease via wavelet entropy and multilayer perceptron trained by biogeography-based optimization," Multimedia Tools and Applications, vol. 77, pp. 10393-10417, 2018.
[CrossRef] [Web of Science Times Cited 61] [SCOPUS Times Cited 67]


[13] F. Malik, S. Farhan, and M. A. Fahiem, "An Ensemble of Classifiers based Approach for Prediction of Alzheimer's Disease using fMRI Images based on Fusion of Volumetric, Textural and Hemodynamic Features," Advances in Electrical and Computer Engineering, vol. 18, pp. 61-71, 2018.
[CrossRef] [Full Text] [Web of Science Times Cited 4] [SCOPUS Times Cited 6]


[14] A. Ayub, S. Farhan, M. A. Fahiem, and H. Tauseef, "A novel approach for the prediction of conversion from mild cognitive impairment to Alzheimer's disease using MRI images," Advances in Electrical and Computer Engineering, vol. 17, pp. 113-123, 2017.
[CrossRef] [Full Text] [Web of Science Times Cited 2] [SCOPUS Times Cited 2]


[15] J. E. Arco, J. Ramirez, J. M. Gorriz, C. G. Puntonet, and M. Ruz, "Short-term prediction of MCI to AD conversion based on longitudinal MRI analysis and neuropsychological tests," in Innovation in Medicine and Healthcare 2015, ed: Springer, 2016, pp. 385-394.
[CrossRef] [Web of Science Times Cited 10] [SCOPUS Times Cited 9]


[16] C. Misra, Y. Fan, and C. Davatzikos, "Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: results from ADNI," Neuroimage, vol. 44, pp. 1415-1422, 2009.
[CrossRef] [Web of Science Times Cited 358] [SCOPUS Times Cited 392]


[17] A. M. Mubeen, A. Asaei, A. H. Bachman, J. J. Sidtis, B. A. Ardekani, et al., "A six-month longitudinal evaluation significantly improves accuracy of predicting incipient Alzheimer's disease in mild cognitive impairment," Journal of Neuroradiology, vol. 44, pp. 381-387, 2017.
[CrossRef] [Web of Science Times Cited 11] [SCOPUS Times Cited 12]


[18] I. Beheshti, H. Demirel, and ADNI, "Probability distribution function-based classification of structural MRI for the detection of Alzheimer's disease," Computers in Biology and Medicine, vol. 64, pp. 208-216, 2015.
[CrossRef] [Web of Science Times Cited 55] [SCOPUS Times Cited 62]


[19] S. Tangaro, A. Fanizzi, N. Amoroso, R. Bellotti, and ADNI, "A fuzzy-based system reveals Alzheimer's disease onset in subjects with Mild Cognitive Impairment," Physica Medica, vol. 38, pp. 36-44, 2017.
[CrossRef] [Web of Science Times Cited 12] [SCOPUS Times Cited 13]


[20] S. Minhas, A. Khanum, F. Riaz, S. A. Khan, and A. Alvi, "Trajectory based predictive modeling of conversion from mild cognitive impairment to Alzheimer's disease," in 2017 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), 2017, pp. 385-388.
[CrossRef] [SCOPUS Times Cited 1]


[21] I. Beheshti, H. Demirel, F. Farokhian, C. Yang, H. Matsuda, et al., "Structural MRI-based detection of Alzheimer's disease using feature ranking and classification error," Computer Methods and Programs in Biomedicine, vol. 137, pp. 177-193, 2016.
[CrossRef] [Web of Science Times Cited 35] [SCOPUS Times Cited 40]


[22] K. R. Chapman, H. Bing-Canar, M. L. Alosco, E. G. Steinberg, B. Martin, et al., "Mini Mental State Examination and Logical Memory scores for entry into Alzheimer's disease trials," Alzheimer's research & therapy, vol. 8, pp. 9, 2016.
[CrossRef] [Web of Science Times Cited 55] [SCOPUS Times Cited 59]


[23] M. J. Baek, K. Kim, Y. H. Park, and S. Kim, "The validity and reliability of the mini-mental state examination-2 for detecting mild cognitive impairment and Alzheimer's disease in a Korean population," PloS One, vol. 11, pp. e0163792, 2016.
[CrossRef] [Web of Science Times Cited 10] [SCOPUS Times Cited 27]


[24] L. Zheng, X. Kong, Y. Cui, Y. Wei, J. Zhang, et al., "Conversion from MCI to AD in patients with the APOEϵ4 genotype: prediction by plasma HCY and serum BDNF," Neuroscience Letters, vol. 626, pp. 19-24, 2016.
[CrossRef] [Web of Science Times Cited 13] [SCOPUS Times Cited 14]


[25] K. K. Sarma, "Neural network based feature extraction for assamese character and numeral recognition," International Journal of Artificial Intelligence, vol. 2, pp. 37-56, 2009

[26] A. Albu, R.-E. Precup and T.-A. Teban, Results and Challenges of Artificial Neural Networks Used for Decision-Making in Medical Applications, Facta Universitatis, Series: Mechanical Engineering (University of Nis), vol. 17, no 4, pp. 285-308, 2019

[27] C. Pozna, R.-E. Precup, J. K. Tar, I. Skrjanc, and S. Preitl, "New results in modelling derived from Bayesian filtering," Knowledge-Based Systems, vol. 23, pp. 182-194, 2010.
[CrossRef] [Web of Science Times Cited 53] [SCOPUS Times Cited 57]


[28] R. A. Gil, Z. C. Johanyak, and T. Kovacs, "Surrogate model based optimization of traffic lights cycles and green period ratios using microscopic simulation and fuzzy rule interpolation," Int. J. Artif. Intell, vol. 16, pp. 20-40, 2018

[29] D. C. Newitt, E. T. Tan, L. J. Wilmes, T. L. Chenevert, J. Kornak, et al., "Gradient nonlinearity correction to improve apparent diffusion coefficient accuracy and standardization in the american college of radiology imaging network 6698 breast cancer trial," Journal of Magnetic Resonance Imaging, vol. 42, pp. 908-919, 2015.
[CrossRef] [Web of Science Times Cited 31] [SCOPUS Times Cited 33]


[30] J. Jovicich, S. Czanner, D. Greve, E. Haley, A. van Der Kouwe, et al., "Reliability in multi-site structural MRI studies: effects of gradient non-linearity correction on phantom and human data," Neuroimage, vol. 30, pp. 436-443, 2006.
[CrossRef] [Web of Science Times Cited 829] [SCOPUS Times Cited 836]


[31] J. G. Sled, A. P. Zijdenbos, and A. C. Evans, "A nonparametric method for automatic correction of intensity nonuniformity in MRI data," IEEE transactions on medical imaging, vol. 17, pp. 87-97, 1998.
[CrossRef] [Web of Science Times Cited 3386] [SCOPUS Times Cited 3544]


[32] M. J. Müller, D. Greverus, P. R. Dellani, C. Weibrich, P. R. Wille, et al., "Functional implications of hippocampal volume and diffusivity in mild cognitive impairment," Neuroimage, vol. 28, pp. 1033-1042, 2005.
[CrossRef] [Web of Science Times Cited 149] [SCOPUS Times Cited 158]


[33] P. M. Thompson, K. M. Hayashi, G. I. de Zubicaray, A. L. Janke, S. E. Rose, et al., "Mapping hippocampal and ventricular change in Alzheimer disease," Neuroimage, vol. 22, pp. 1754-1766, 2004.
[CrossRef] [Web of Science Times Cited 433] [SCOPUS Times Cited 465]


[34] J. H. Morra, Z. Tu, L. G. Apostolova, A. E. Green, C. Avedissian, et al., "Automated mapping of hippocampal atrophy in 1-year repeat MRI data from 490 subjects with Alzheimer's disease, mild cognitive impairment, and elderly controls," Neuroimage, vol. 45, pp. S3-S15, 2009.
[CrossRef] [Web of Science Times Cited 178] [SCOPUS Times Cited 188]


[35] V. Dill, P. C. Klein, A. R. Franco, and M. S. Pinho, "Atlas selection for hippocampus segmentation: Relevance evaluation of three meta-information parameters," Computers in Biology and Medicine, vol. 95, pp. 90-98, 2018.
[CrossRef] [Web of Science Times Cited 9] [SCOPUS Times Cited 12]


[36] S. Sandor and R. Leahy, "Surface-based labeling of cortical anatomy using a deformable atlas," Medical Imaging, IEEE Transactions on, vol. 16, pp. 41-54, 1997.
[CrossRef] [Web of Science Times Cited 193] [SCOPUS Times Cited 223]


[37] D. W. Shattuck, S. R. Sandor-Leahy, K. A. Schaper, D. A. Rottenberg, and R. M. Leahy, "Magnetic resonance image tissue classification using a partial volume model," NeuroImage, vol. 13, pp. 856-876, 2001.
[CrossRef] [Web of Science Times Cited 708] [SCOPUS Times Cited 790]


[38] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proceedings of the IEEE, vol. 86, pp. 2278-2324, 1998.
[CrossRef] [Web of Science Times Cited 17841] [SCOPUS Times Cited 23142]


[39] M. A. Iftikhar and A. Idris, "An ensemble classification approach for automated diagnosis of Alzheimer's disease and mild cognitive impairment," in 2016 International Conference on Open Source Systems & Technologies (ICOSST), 2016, pp. 78-83.
[CrossRef] [SCOPUS Times Cited 8]


[40] D. Cheng, M. Liu, J. Fu, and Y. Wang, "Classification of MR brain images by combination of multi-CNNs for AD diagnosis," in Ninth International Conference on Digital Image Processing (ICDIP 2017), 2017, p. 1042042.
[CrossRef] [Web of Science Times Cited 26] [SCOPUS Times Cited 28]


[41] X. Li, Y. Li, and X. Li, "Predicting clinical outcomes of alzheimer's disease from complex brain networks," in International Conference on Advanced Data Mining and Applications, 2017, pp. 519-525.
[CrossRef] [Web of Science Times Cited 8] [SCOPUS Times Cited 9]


[42] S. Liu, S. Liu, W. Cai, H. Che, S. Pujol, et al., "Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer's disease," IEEE Transactions on Biomedical Engineering, vol. 62, pp. 1132-1140, 2014.
[CrossRef] [Web of Science Times Cited 230] [SCOPUS Times Cited 261]


[43] J. Lotjonen, R. Wolz, J. Koikkalainen, V. Julkunen, L. Thurfjell, et al., "Fast and robust extraction of hippocampus from MR images for diagnostics of Alzheimer's disease," Neuroimage, vol. 56, pp. 185-196, 2011.
[CrossRef] [Web of Science Times Cited 80] [SCOPUS Times Cited 94]


[44] R. Wei, C. Li, N. Fogelson, and L. Li, "Prediction of conversion from mild cognitive impairment to Alzheimer's Disease using MRI and structural network features," Frontiers in Aging Neuroscience, vol. 8, pp. 76, 2016.
[CrossRef] [Web of Science Times Cited 27] [SCOPUS Times Cited 27]


[45] F. Li, L. Tran, K.-H. Thung, S. Ji, D. Shen, et al., "A robust deep model for improved classification of AD/MCI patients," IEEE Journal of Biomedical and Health Informatics, vol. 19, pp. 1610-1616, 2015.
[CrossRef] [Web of Science Times Cited 111] [SCOPUS Times Cited 147]


[46] W. Lin, T. Tong, Q. Gao, D. Guo, X. Du, et al., "Convolutional neural networks-based MRI image analysis for the Alzheimer's disease prediction from mild cognitive impairment," Frontiers in neuroscience, vol. 12, p. 777, 2018.
[CrossRef] [Web of Science Times Cited 79] [SCOPUS Times Cited 99]


[47] A. Ortiz, J. Munilla, J. M. Gorriz, and J. Ramirez, "Ensembles of deep learning architectures for the early diagnosis of the Alzheimer's disease," International journal of neural systems, vol. 26, p. 1650025, 2016.
[CrossRef] [Web of Science Times Cited 141] [SCOPUS Times Cited 180]


[48] H.-I. Suk, S.-W. Lee, D. Shen, and A. s. D. N. Initiative, "Deep ensemble learning of sparse regression models for brain disease diagnosis," Medical image analysis, vol. 37, pp. 101-113, 2017.
[CrossRef] [Web of Science Times Cited 111] [SCOPUS Times Cited 134]


[49] J. Lindsay, D. Laurin, R. Verreault, R. Hebert, B. Helliwell, et al., "Risk factors for Alzheimer's disease: a prospective analysis from the Canadian Study of Health and Aging," American Journal of Epidemiology, vol. 156, pp. 445-453, 2002.
[CrossRef] [Web of Science Times Cited 834] [SCOPUS Times Cited 961]


[50] E. E. Bron, M. Smits, W. M. Van Der Flier, H. Vrenken, F. Barkhof, et al., "Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: the CADDementia challenge," NeuroImage, vol. 111, pp. 562-579, 2015.
[CrossRef] [Web of Science Times Cited 163] [SCOPUS Times Cited 182]


[51] E. Moradi, A. Pepe, C. Gaser, H. Huttunen, J. Tohka, et al., "Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects," Neuroimage, vol. 104, pp. 398-412, 2015. ,
[CrossRef] [Web of Science Times Cited 317] [SCOPUS Times Cited 364]


[52] S. Korolev, A. Safiullin, M. Belyaev, and Y. Dodonova, "Residual and plain convolutional neural networks for 3D brain MRI classification," in 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), 2017, pp. 835-838.
[CrossRef] [SCOPUS Times Cited 125]


[53] H. Choi, K. H. Jin, and ADNI, "Predicting cognitive decline with deep learning of brain metabolism and amyloid imaging," Behavioural Brain Research, vol. 344, pp. 103-109, 2018.
[CrossRef] [Web of Science Times Cited 71] [SCOPUS Times Cited 81]




References Weight

Web of Science® Citations for all references: 31,262 TCR
SCOPUS® Citations for all references: 38,399 TCR

Web of Science® Average Citations per reference: 579 ACR
SCOPUS® Average Citations per reference: 711 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2021-11-26 09:13 in 318 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2021
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: