Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 1.221
JCR 5-Year IF: 0.961
SCOPUS CiteScore: 2.5
Issues per year: 4
Current issue: Nov 2021
Next issue: Feb 2022
Avg review time: 90 days


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

1,779,413 unique visits
598,455 downloads
Since November 1, 2009



Robots online now
PetalBot


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 21 (2021)
 
     »   Issue 4 / 2021
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
 Volume 20 (2020)
 
     »   Issue 4 / 2020
 
     »   Issue 3 / 2020
 
     »   Issue 2 / 2020
 
     »   Issue 1 / 2020
 
 
 Volume 19 (2019)
 
     »   Issue 4 / 2019
 
     »   Issue 3 / 2019
 
     »   Issue 2 / 2019
 
     »   Issue 1 / 2019
 
 
 Volume 18 (2018)
 
     »   Issue 4 / 2018
 
     »   Issue 3 / 2018
 
     »   Issue 2 / 2018
 
     »   Issue 1 / 2018
 
 
 Volume 17 (2017)
 
     »   Issue 4 / 2017
 
     »   Issue 3 / 2017
 
     »   Issue 2 / 2017
 
     »   Issue 1 / 2017
 
 
  View all issues  








LATEST NEWS

2021-Jun-30
Clarivate Analytics published the InCites Journal Citations Report for 2020. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.221 (1.053 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.961.

2021-Jun-06
SCOPUS published the CiteScore for 2020, computed by using an improved methodology, counting the citations received in 2017-2020 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering in 2020 is 2.5, better than all our previous results.

2021-Apr-15
Release of the v3 version of AECE Journal website. We moved to a new server and implemented the latest cryptographic protocols to assure better compatibility with the most recent browsers. Our website accepts now only TLS 1.2 and TLS 1.3 secure connections.

2020-Jun-29
Clarivate Analytics published the InCites Journal Citations Report for 2019. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.102 (1.023 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.734.

2020-Jun-11
Starting on the 15th of June 2020 we wiil introduce a new policy for reviewers. Reviewers who provide timely and substantial comments will receive a discount voucher entitling them to an APC reduction. Vouchers (worth of 25 EUR or 50 EUR, depending on the review quality) will be assigned to reviewers after the final decision of the reviewed paper is given. Vouchers issued to specific individuals are not transferable.

Read More »


    
 

  2/2020 - 4

Determination with Linear Form of Turkey's Energy Demand Forecasting by the Tree Seed Algorithm and the Modified Tree Seed Algorithm

BESKIRLI, A. See more information about BESKIRLI, A. on SCOPUS See more information about BESKIRLI, A. on IEEExplore See more information about BESKIRLI, A. on Web of Science, TEMURTAS, H. See more information about  TEMURTAS, H. on SCOPUS See more information about  TEMURTAS, H. on SCOPUS See more information about TEMURTAS, H. on Web of Science, OZDEMIR, D. See more information about OZDEMIR, D. on SCOPUS See more information about OZDEMIR, D. on SCOPUS See more information about OZDEMIR, D. on Web of Science
 
View the paper record and citations in View the paper record and citations in Google Scholar
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,422 KB) | Citation | Downloads: 329 | Views: 768

Author keywords
algorithms, demand forecasting, energy optimization, heuristic algorithms

References keywords
energy(45), demand(19), turkey(17), algorithm(17), optimization(13), systems(8), artificial(8), forecasting(7), applications(7), neural(6)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2020-05-31
Volume 20, Issue 2, Year 2020, On page(s): 27 - 34
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2020.02004
Web of Science Accession Number: 000537943500004
SCOPUS ID: 85087464201

Abstract
Quick view
Full text preview
Energy plays an important role in every stage of human life in different forms and variations. Along with the developments in economic, social and industrial fields, the amount of energy that countries need is increasing day by day. Therefore, it is significant to estimate the energy demand for a country's economic activities accurately. In this study, the energy demand forecast (EDF) application optimization problem of Turkey, one of the real-world optimization problems, was performed by MTSA (Modified Tree Seed Algorithm) and TSA (Tree Seed Algorithm) methods. From 1979 to 2005, gross domestic product (GDP), population, export and import values were used as parameter data. Thus, in the presence of three different possible scenarios, Turkey's energy demand from 2006 to 2025, which was estimated by MTSA and TSA methods. To demonstrate the success of MTSA and TSA in the problem of energy demand forecasting (EDF), they are compared with Ant Colony Algorithm (ACO), Particle Swarm Optimization (PSO), Bat Algorithm (BA), Differential Evolution Algorithm (DEA) and Artificial Algae Algorithm (AAA) methods which are in the literature. According to the results of the analysis, it was observed that the MTSA method was a successful estimation tool for energy demand.


References | Cited By  «-- Click to see who has cited this paper

[1] H. Ceylan and H. K. Ozturk, "Estimating energy demand of Turkey based on economic indicators using a genetic algorithm approach," Energy Conversion and Management, vol. 45, no. 15, pp. 2525-2537, 2004,
[CrossRef] [Web of Science Times Cited 136] [SCOPUS Times Cited 162]


[2] H. Tatli and K. Besir, "The Place of Turkey in the OECD Countries in the Context of Energy Consumption and Energy Prices," vol. 8, no. 15, pp. 353-376, 2018,
[CrossRef]


[3] G. Gunes and E. Aslan, "Use of renewable energy sources and its effects to sustainable tourism - Turkey Example," in Dogu Karadeniz Bolgesi Surdurulebilir Turizm Kongresi, pp. 221-234: Gumushane Universitesi Yayinlari-31, Gumushane/Turkey, 2015.

[4] A. Sozen, E. Arcaklioglu, and M. Ozkaymak, "Modelling of Turkey's net energy consumption using artificial neural network," Int. J. Comput. Appl. Technol., vol. 22, no. 2/3, pp. 130-136, 2005,
[CrossRef] [SCOPUS Times Cited 23]


[5] E. Bergasse, W. Paczynski, M. Dabrowski, L. De Wulf, "The relationship between energy and socio-economic development in the Southern and Eastern Mediterranean," CASE Network Reports, no. 412, 2013.

[6] H. Ogurlu, "Long Term Electrical Load Forecasting of Turkey Using Mathematical Modeling," MS, Selcuk Universitesi Fen Bilimleri Enstitusu, 2011.

[7] M. F. Tefek, H. Uguz and M. Gucyetmez, "A new hybrid gravitational search-teaching-learning-based optimization method for energy demand estimation of Turkey," Neural Computing and Applications, vol. 31, pp. 2939-2954, 2019,
[CrossRef] [Web of Science Times Cited 7] [SCOPUS Times Cited 12]


[8] A. Unler, "Improvement of energy demand forecasts using swarm intelligence: The case of Turkey with projections to 2025," Energy Policy, vol. 36, no. 6, pp. 1937-1944, 2008,
[CrossRef] [Web of Science Times Cited 145] [SCOPUS Times Cited 155]


[9] Z. W. Geem, W. E. Roper, "Energy demand estimation of South Korea using artificial neural network," Energy Policy, vol. 37, no. 10, pp. 4049-4054, 2009,
[CrossRef] [Web of Science Times Cited 120] [SCOPUS Times Cited 133]


[10] L. Ekonomou, "Greek long-term energy consumption prediction using artificial neural networks," Energy, vol. 35, no. 2, pp. 512-517, 2010,
[CrossRef] [Web of Science Times Cited 250] [SCOPUS Times Cited 300]


[11] S. Yu, K. Zhu, "A hybrid procedure for energy demand forecasting in China," Energy, vol. 37, no. 1, pp. 396-404, 2012,
[CrossRef] [Web of Science Times Cited 45] [SCOPUS Times Cited 45]


[12] M. Piltan, H. Shiri, S. Ghaderi, "Energy demand forecasting in Iranian metal industry using linear and nonlinear models based on evolutionary algorithms," Energy conversion and management, vol. 58, pp. 1-9, 2012,
[CrossRef] [Web of Science Times Cited 42] [SCOPUS Times Cited 45]


[13] J. Sanchez-Oro, A. Duarte, S. Salcedo-Sanz, "Robust total energy demand estimation with a hybrid Variable Neighborhood Search-Extreme Learning Machine algorithm," Energy Conversion and Management, vol. 123, pp. 445-452, 2016,
[CrossRef] [Web of Science Times Cited 17] [SCOPUS Times Cited 18]


[14] Z. Mohamed, P. Bodger, "Forecasting electricity consumption in New Zealand using economic and demographic variables," Energy, vol. 30, no. 10, pp. 1833-1843, 2005,
[CrossRef] [Web of Science Times Cited 170] [SCOPUS Times Cited 201]


[15] V. Bianco, O. Manca, S. Nardini, "Electricity consumption forecasting in Italy using linear regression models," Energy, vol. 34, no. 9, pp. 1413-1421, 2009,
[CrossRef] [Web of Science Times Cited 295] [SCOPUS Times Cited 355]


[16] S. Yu, K. Zhu, X. Zhang, "Energy demand projection of China using a path-coefficient analysis and PSO-GA approach," Energy Conversion and Management, vol. 53, no. 1, pp.142-153, 2012,
[CrossRef] [Web of Science Times Cited 69] [SCOPUS Times Cited 79]


[17] S. Yu, Y. Wei, K. Wang, "A PSO-GA optimal model to estimate primary energy demand of China," Energy Policy, vol. 42, pp. 329-340, 2012,
[CrossRef] [Web of Science Times Cited 72] [SCOPUS Times Cited 85]


[18] E. Erdogdu, "Electricity demand analysis using cointegration and ARIMA modelling: A case study of Turkey," Energy Policy, vol. 35, no. 2, pp. 1129-1146, 2007,
[CrossRef] [Web of Science Times Cited 178] [SCOPUS Times Cited 197]


[19] WECTNC, World Energy Council, Energy Report-2014, Ankara, ISSN: 1301-6318 (Ankara, May). 2015.

[20] M. Afzalirad, M. Shafipour, "Design of an efficient genetic algorithm for a resource-constrained unrelated parallel machine scheduling problem with machine eligibility restrictions," Journal of Intelligent Manufacturing, vol. 29, no. 2, pp. 423-437, 2018,
[CrossRef] [Web of Science Times Cited 25] [SCOPUS Times Cited 34]


[21] A. Mucherino, O. Seref, "Modeling and solving real-life global optimization problems with meta-heuristic methods," Advances in Modeling Agricultural Systems, pp. 403-419, 2009,
[CrossRef] [SCOPUS Times Cited 7]


[22] I. Pence, M.S. Cesmeli, F.A. Senel, B. Cetisli, "A new unconstrained global optimization method based on clustering and parabolic approximation," Expert Systems with Applications, vol. 55, pp. 493-507, 2016,
[CrossRef] [Web of Science Times Cited 9] [SCOPUS Times Cited 9]


[23] A. Gaudiani, E. Luque, P. García, M. Re, M. Naiouf and A. Giusti, "How a computational method can help to improve the quality of river flood prediction by simulation," Advances and New Trends in Environmental and Energy Informatics, pp. 337-351, 2016.

[24] H. Shareef, M. M. Islam, A. A. Ibrahim, A. H. Mutlag, "A Nature Inspired Heuristic Optimization Algorithm Based on Lightning," 2015 3rd International Conference on Artificial Intelligence, Modelling and Simulation (AIMS), pp. 9-14, 2015,
[CrossRef] [Web of Science Times Cited 2] [SCOPUS Times Cited 6]


[25] P. Agarwal and S. Mehta, " Nature-inspired algorithms: state-of-art, problems and prospects," International Journal of Computer Applications, vol. 100, no. 14, pp. 14-21, 2014.

[26] S. Akyol and B. Alatas, "The Current Swarm Intelligence Optimization Algorithms," Nevsehir Bilim ve Teknoloji Dergisi, vol. 1, no. 1, pp. 36-40, 2012.

[27] B. Akay and D. Karaboga, "A modified Artificial Bee Colony algorithm for real-parameter optimization," Information Sciences, vol. 192, no. Supplement C, pp. 120-142, 2012,
[CrossRef] [Web of Science Times Cited 704] [SCOPUS Times Cited 869]


[28] J. Chen, W. Yu, J. Tian, L. Chen, and Z. Zhou, "Image contrast enhancement using an artificial bee colony algorithm," Swarm and Evolutionary Computation, vol. 38, pp. 287-294, 2018,
[CrossRef] [Web of Science Times Cited 46] [SCOPUS Times Cited 65]


[29] S. G. Ahmad, C. S. Liew, E. U. Munir, T. F. Ang, and S. U. Khan, "A hybrid genetic algorithm for optimization of scheduling workflow applications in heterogeneous computing systems," Journal of Parallel and Distributed Computing, vol. 87, pp. 80-90, 2016,
[CrossRef] [Web of Science Times Cited 56] [SCOPUS Times Cited 68]


[30] S. Yilmaz and E. U. Kucuksille, "A new modification approach on bat algorithm for solving optimization problems," Applied Soft Computing, vol. 28, no. Supplement C, pp. 259-275, 2015,
[CrossRef] [Web of Science Times Cited 142] [SCOPUS Times Cited 169]


[31] M. S. Kiran, E. Ozceylan, M. Gunduz, and T. Paksoy, "A novel hybrid approach based on Particle Swarm Optimization and Ant Colony Algorithm to forecast energy demand of Turkey," Energy Conversion and Management, vol. 53, no. 1, pp. 75-83, 2012,
[CrossRef] [Web of Science Times Cited 136] [SCOPUS Times Cited 154]


[32] M. S. Kiran, E. Ozceylan, M. Gunduz, and T. Paksoy, "Swarm intelligence approaches to estimate electricity energy demand in Turkey," Knowledge-Based Systems, vol. 36, pp. 93-103, 2012,
[CrossRef] [Web of Science Times Cited 68] [SCOPUS Times Cited 71]


[33] M. Bayrak and O. Esen, "Forecasting Turkey's energy demand using artificial neural networks: Future Projection Based on an Energy Deficit," Journal of Applied Economic Sciences, vol. 2, no. 28, pp. 191-204, 2014.

[34] B. Cayir Ervural and B. Ervural, "Improvement of grey prediction models and their usage for energy demand forecasting," Journal of Intelligent & Fuzzy Systems, vol. 34, no. 4, pp. 2679-2688, 2018,
[CrossRef] [Web of Science Times Cited 9] [SCOPUS Times Cited 11]


[35] M. S. Kiran, "TSA: Tree-seed algorithm for continuous optimization," Expert Systems with Applications, vol. 42, no. 19, pp. 6686-6698, 2015,
[CrossRef] [Web of Science Times Cited 110] [SCOPUS Times Cited 127]


[36] M. Aslan, M. Beskirli, H. Kodaz, M.S. Kiran, "An improved tree seed algorithm for optimization problems," Int J Mach Learn Comput, vol. 8, no. 1, pp. 20-25, 2018,
[CrossRef] [SCOPUS Times Cited 12]


[37] M. Beskirli, "Performance Analysis of Tree Seed Algorithm in High Dimensional Test Functions," European Journal of Science and Technology, (Special Issue), pp. 93-101, 2019,
[CrossRef]


[38] M. F. Tefek and H. Uguz, " Solution of economic dispatch problem for wind-thermal power systems by a modified hybrid optimization method," Journal of the Faculty of Engineering and Architecture of Gazi University, vol. 34, no. 4, pp. 1871-1895, 2019,
[CrossRef] [Web of Science Times Cited 4] [SCOPUS Times Cited 4]


[39] A. Beskirli, D. Ozdemir, and H. Temurtas, "A comparison of a modified tree-seed algorithm for high-dimensional numerical functions," Neural Computing and Applications, pp. 1-35, 2019,
[CrossRef] [Web of Science Times Cited 5] [SCOPUS Times Cited 3]


[40] WECTNC, World Energy Council, Energy Report-2013, Ankara (in Turkish), ISSN: 1301-6318 (Ankara, Ocak). 2014.

[41] NS, "National Statistics, http://www.tuik.gov.tr (in Turkish)," 2016.

[42] M. F. Tefek and H. Uguz, "Estimation of Turkey Electric Energy Demand until the Year 2035 Using TLBO Algorithm" International Journal of Intelligent Systems and Applications in Engineering, vol. 4, pp. 48-52, 2016,
[CrossRef]


[43] M. Beskirli, H. Hakli, and H. Kodaz, "The energy demand estimation for Turkey using differential evolution algorithm," Sādhanā, vol. 42, no. 10, pp. 1705-1715, 2017,
[CrossRef] [Web of Science Times Cited 7] [SCOPUS Times Cited 9]


[44] D. M. Toksari, "Ant colony optimization approach to estimate energy demand of Turkey," Energy Policy, vol. 35, no. 8, pp. 3984-3990, 2007,
[CrossRef] [Web of Science Times Cited 118] [SCOPUS Times Cited 124]


[45] H. Hakli and H. Uguz, "Estimating energy demand of turkey using bat algorithm model," in International Journal of Arts & Sciences, Prague, Czech Republic, 2014.

[46] A. Beskirli, M. Beskirli, H. Hakli, and H. Uguz, "Comparing energy demand estimation using artificial algae algorithm: The case of Turkey," Journal of Clean Energy Technologies, vol. 6, no. 4, 2018,
[CrossRef]




References Weight

Web of Science® Citations for all references: 2,987 TCR
SCOPUS® Citations for all references: 3,552 TCR

Web of Science® Average Citations per reference: 64 ACR
SCOPUS® Average Citations per reference: 76 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2021-11-28 12:06 in 215 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2021
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: