Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.800
JCR 5-Year IF: 1.000
SCOPUS CiteScore: 2.0
Issues per year: 4
Current issue: Aug 2023
Next issue: Nov 2023
Avg review time: 77 days
Avg accept to publ: 48 days
APC: 300 EUR


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,270,901 unique visits
908,878 downloads
Since November 1, 2009



No robots online now


SCOPUS CiteScore

SCOPUS CiteScore


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 23 (2023)
 
     »   Issue 3 / 2023
 
     »   Issue 2 / 2023
 
     »   Issue 1 / 2023
 
 
 Volume 22 (2022)
 
     »   Issue 4 / 2022
 
     »   Issue 3 / 2022
 
     »   Issue 2 / 2022
 
     »   Issue 1 / 2022
 
 
 Volume 21 (2021)
 
     »   Issue 4 / 2021
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
 Volume 20 (2020)
 
     »   Issue 4 / 2020
 
     »   Issue 3 / 2020
 
     »   Issue 2 / 2020
 
     »   Issue 1 / 2020
 
 
  View all issues  


FEATURED ARTICLE

Application of the Voltage Control Technique and MPPT of Stand-alone PV System with Storage, HIVZIEFENDIC, J., VUIC, L., LALE, S., SARIC, M.
Issue 1/2022

AbstractPlus


SAMPLE ARTICLES

Performance Analysis of Ryu-POX Controller in Different Tree-Based SDN Topologies, CABARKAPA, D., RANCIC, D.
Issue 3/2021

AbstractPlus

Comparison of Control Configurations and MPPT Algorithms for Single-Phase Grid-Connected Photovoltaic Inverter, PRASATSAP, U., NERNCHAD, N., TERMRITTHIKUN, C., SRITA, S., KAEWCHUM, T., SOMKUN, S.
Issue 2/2023

AbstractPlus

A Wind Energy Prediction Scheme Combining Cauchy Variation and Reverse Learning Strategy, WU, X., SHEN, X., ZHANG, J., ZHANG, Y.
Issue 4/2021

AbstractPlus

New Results on the IC_AOMDV Protocol for Vehicular Ad Hoc Networks in Urban Areas, de ASSIS, D. R., WILLE, E. C. G., ALVES JUNIOR, J.
Issue 3/2023

AbstractPlus

Firefly Algorithm Based Optimization Model for Planning of Optical Transport Networks, OLIVEIRA, B. Q., SOUSA, M. A., TELES VIEIRA, F. H.
Issue 2/2020

AbstractPlus

Triple-feature-based Particle Filter Algorithm Used in Vehicle Tracking Applications, ABDULLA, A. A., GRAOVAC, S., PAPIC, V., KOVACEVIC., B.
Issue 2/2021

AbstractPlus




LATEST NEWS

2023-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2022. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.800 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 1.000.

2023-Jun-05
SCOPUS published the CiteScore for 2022, computed by using an improved methodology, counting the citations received in 2019-2022 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2022 is 2.0. For "General Computer Science" we rank #134/233 and for "Electrical and Electronic Engineering" we rank #478/738.

2022-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2021. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.825 (0.722 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.752.

2022-Jun-16
SCOPUS published the CiteScore for 2021, computed by using an improved methodology, counting the citations received in 2018-2021 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2021 is 2.5, the same as for 2020 but better than all our previous results.

2021-Jun-30
Clarivate Analytics published the InCites Journal Citations Report for 2020. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.221 (1.053 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.961.

Read More »


    
 

  3/2020 - 3

 HIGHLY CITED PAPER 

An Artificial Immune System Approach for a Multi-compartment Queuing Model for Improving Medical Resources and Inpatient Bed Occupancy in Pandemics

BELCIUG, S. See more information about BELCIUG, S. on SCOPUS See more information about BELCIUG, S. on IEEExplore See more information about BELCIUG, S. on Web of Science, BEJINARIU, S.-I. See more information about  BEJINARIU, S.-I. on SCOPUS See more information about  BEJINARIU, S.-I. on SCOPUS See more information about BEJINARIU, S.-I. on Web of Science, COSTIN, H. See more information about COSTIN, H. on SCOPUS See more information about COSTIN, H. on SCOPUS See more information about COSTIN, H. on Web of Science
 
View the paper record and citations in View the paper record and citations in Google Scholar
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,269 KB) | Citation | Downloads: 723 | Views: 1,492

Author keywords
artificial intelligence, evolutionary computation, hospitals, optimization, queueing analysis

References keywords
optimization(22), inspired(12), nature(9), algorithms(9), intelligence(8), artificial(7), systems(6), gorunescu(6), algorithm(6), selection(5)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2020-08-31
Volume 20, Issue 3, Year 2020, On page(s): 23 - 30
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2020.03003
Web of Science Accession Number: 000564453800003
SCOPUS ID: 85090354940

Abstract
Quick view
Full text preview
In the context of the Covid-19 pandemic the pressure that is put on the medical systems is increasing exponentially. Healthcare systems resources are in general scarce, and hence they require policies that ensure the optimal usage of beds and utilization costs. The aim of this study is to explore how artificial immune system approaches for a multi-queuing model may aid the hospital managers improve their resources. The proposed system outlines the route of Covid-19 patients in the intensive care unit (ICU), the compartmental model proposes a reasonable composition of the ICU, considering the queuing parameters, while the artificial immune system optimizes the needed resources (beds plus associated costs). The methodology was demonstrated through a simulation based on real data collected from official sources.


References | Cited By  «-- Click to see who has cited this paper

[1] S. Belciug, F. Gorunescu, "How can intelligent decision support systems help the medical research", in S. Belciug, F. Gorunescu: "Intelligent Decision Support Systems - A Journey to Smarter Healthcare", Springer, pp. 71-98, 2020.
[CrossRef] [SCOPUS Times Cited 7]


[2] J. Phua et al., "Intensive care management of coronavirus disease 2019 (COVID-19): challenges and recommendations", Lancet Respir Med,
[CrossRef] [Web of Science Times Cited 614] [SCOPUS Times Cited 984]


[3] A. Remuzzi, G. Remuzzi, "COVID-19 and Italy: what next", Lancet, 2020
[CrossRef] [Web of Science Times Cited 1812] [SCOPUS Times Cited 2056]


[4] D. Wang, B. Hu, et al. "Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan,China",JAMA, 2020
[CrossRef]


[5] WHO - China Joint Mission, "Report of the WHO - Chine Joint Mission on Coronavirus Disease (COVID-19)." https://www.who.int/ docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf (accessed April 27, 2020)

[6] F. Zhou, T. Yu, R. Du, et al., "Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study", Lancer, 1054-1062, 2020

[7] G. Grasselli, A. Zangrillp, A. Zanella, et al., "Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of Lombardy Regiom, Italy", JAMA, 2020
[CrossRef]


[8] Y-J. Gong, J. Zhang, Z. Fan, "A multi-objective comprehensive learning particle swarm optimization with a binary search-based representation scheme for bed allocation problem in general hospital", Proc IEEE International conference on systems, man, cybernetics, Istanbul, Turkey, 10-13 October, 1083-1088, 2010
[CrossRef] [SCOPUS Times Cited 8]


[9] L. Garg, S. McClean, B. Meenan, P. Millard, "A non-homogeneous discrete time Markov model for admission scheduling and resource planning in a cost or capacity constrained healthcare system", Health Care Manage Sci, 13 (2), 155-169, 2010.
[CrossRef] [Web of Science Times Cited 47] [SCOPUS Times Cited 57]


[10] F. Gorunescu, S. I. McClean, P. H. Millard, "A queueing model for bed-occupancy management and planning of hospitals", J Oper Res Soc, 53 (1), 19-24, 2002.
[CrossRef] [SCOPUS Times Cited 132]


[11] F. Gorunescu, S. I. McClean, P. H Millard, "Using a queueing model to help plan bed allocation in a department of geriatric medicine", Health Care Manage Sci, 5, 307-312, 2002.
[CrossRef] [SCOPUS Times Cited 87]


[12] S. Belciug, F. Gorunescu, "Improving hospital bed occupancy and resource utilization through queueing modeling and evolutionary computation", J Biomed Inf, 53, 261-269, 2014.
[CrossRef] [Web of Science Times Cited 51] [SCOPUS Times Cited 58]


[13] S. Belciug, F. Gorunescu, "A hybrid genetic algorithm-queueing multi-compartment model for optimizing inpatient bed occupancy and associated cost", Art Int in Med, 68, 59-69, 2016.
[CrossRef] [Web of Science Times Cited 12] [SCOPUS Times Cited 14]


[14] I. Fister Jr., X-S. Yang, I. Fister, J. Brest, D. Fister, "A Brief Review of Nature-Inspired Algorithms for Optimization", in ELEKTROTEHNISKI VESTNIK 80(3): 1-7, 2013

[15] J. H. Holland, "Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence". U Michigan Press, 1975.

[16] J. Kennedy and R. Eberhart, "Particle swarm optimization", in Proceedings of the IEEE International Conference on Neural Networks, vol. IV, pp. 1942-1948, 1995,
[CrossRef] [Web of Science Times Cited 29814]


[17] Y. Liu, K. M. Passino, "Biomimicry of Social Foraging Bacteria for Distributed Optimization: Models, Principles, and Emergent Behaviors", in Journal of Optimization Theory and Applications, 115(3), pp. 603-628, 2002,
[CrossRef] [Web of Science Times Cited 182] [SCOPUS Times Cited 284]


[18] X.-S. Yang, "Flower Pollination Algorithm for Global Optimization", in J.Durand-Lose, N. Jonoska (eds), "Unconventional Computation and Natural Computation", UCNC 2012. Lecture Notes in Computer Science, 7445, 2012,
[CrossRef] [SCOPUS Times Cited 1743]


[19] X.-S. Yang, Nature-Inspired Optimization Algorithms, Elsevier, 2014,
[CrossRef] [SCOPUS Times Cited 1060]


[20] X.-S. Yang; S. Deb, "Cuckoo search via Levy flights". World Congress on Nature & Biologically Inspired Computing (NaBIC 2009). IEEE Publications. 210-214, 2009,
[CrossRef] [Web of Science Times Cited 4292] [SCOPUS Times Cited 5829]


[21] A. Hatamlou, "Black hole: a new heuristic optimization approach for data clustering", in Information Sciences, 222, 2013, pp. 175-184,
[CrossRef] [Web of Science Times Cited 790] [SCOPUS Times Cited 930]


[22] A. P. Piotrowski, J. J. Napiorkowski, and P. M. Rowinski, "How novel is the "novel" black hole optimization approach?", in Information Sciences, 267, Elsevier, pp. 191-200, 2014,
[CrossRef] [Web of Science Times Cited 46] [SCOPUS Times Cited 61]


[23] Y. Tan, Y. Zhu, "Fireworks algorithm for optimization", in Tan Y., Shi Y., and Tan K.C. (eds.), ICSI 2010, Part I, LNCS 6145, pp. 355-364, 2010.
[CrossRef] [SCOPUS Times Cited 855]


[24] Y. Tan, Fireworks Algorithm. A Novel Swarm Intelligence Optimization Method, Springer-Verlag, 2015.
[CrossRef]


[25] Q. Bian, B. Nener, X. Wang, "A quantum inspired genetic algorithm for multimodal optimization of wind disturbance alleviation flight control system", in Chinese Journal of Aeronautics, 32(11), 2480-2488, 2019,
[CrossRef] [Web of Science Times Cited 10] [SCOPUS Times Cited 11]


[26] M. Wozniak, K. Ksiazek, J. Marciniec, D. Polap, "Heat production optimization using bio-inspired algorithms", in Engineering Applications of Artificial Intelligence, 76, 185-201, 2018,
[CrossRef] [Web of Science Times Cited 11] [SCOPUS Times Cited 12]


[27] H. M. Zawbaa, S. Schiano, L. Perez-Gandarillas, C. Grosan, A. Michrafy, C.-Y. Wu, "Computational intelligence modelling of pharmaceutical tabletting processes using bio-inspired optimization algorithms", in Advanced Powder Technology, 29(12), 2966-2977, 2018,
[CrossRef] [Web of Science Times Cited 21] [SCOPUS Times Cited 22]


[28] D. Janiga, R. Czarnota, J. Stopa, P. Wojnarowski, P. Kosowski, "Performance of nature inspired optimization algorithms for polymer Enhanced Oil Recovery process", in Journal of Petroleum Science and Engineering, 154, 354-366, 2017,
[CrossRef] [Web of Science Times Cited 33] [SCOPUS Times Cited 41]


[29] H. G. Zhang, Z. H. Liang, H. J. Liu, R. Wang, Y. A. Liu, "Ensemble framework by using nature inspired algorithms for the early-stage forest fire rescue - A case study of dynamic optimization problems", in Engineering Applications of Artificial Intelligence, 90, 2020,
[CrossRef] [Web of Science Times Cited 14] [SCOPUS Times Cited 17]


[30] H. A. Choudhury, N. Sinha, M. Saikia, "Nature inspired algorithms (NIA) for efficient video compression - A brief study", Engineering Science and Technology, an International Journal, 23(3), 507-526, 2020,
[CrossRef] [Web of Science Times Cited 5] [SCOPUS Times Cited 4]


[31] J. G. dos Santos Junior, J. P. S. do Monte Lima, "Particle swarm optimization for 3D object tracking in RGB-D images", in Computers & Graphics, 76, 167-180, 2018,
[CrossRef] [Web of Science Times Cited 11] [SCOPUS Times Cited 15]


[32] R. D. Badgujar, P.J. Deore, "Hybrid Nature Inspired SMO-GBM Classifier for Exudate Classification on Fundus Retinal Images", IRBM, 40(2), 69-77, 2019,
[CrossRef] [Web of Science Times Cited 5] [SCOPUS Times Cited 12]


[33] S.-I. Bejinariu, H. Costin, "A Comparison of Some Nature Inspired Optimization Metaheuristics Applied in Biomedical Image Registration", in Methods of Information in Medicine, 57 (05/06), Georg Thieme Verlag KG Stuttgart - New York, pp. 280-286, 2018,
[CrossRef] [Web of Science Times Cited 6] [SCOPUS Times Cited 9]


[34] K. Nino, J. Pena, "A Based-Bee Algorithm Approach for the Multi-Mode Project Scheduling Problem", in Procedia Manufacturing, 39, 1864-1871, 2019,
[CrossRef] [Web of Science Times Cited 2] [SCOPUS Times Cited 2]


[35] S.-I.Bejinariu, H. Costin, D. Costin, "Combinatorial versus Priority Based Optimization in Resource Constrained Project Scheduling Problems by Nature Inspired Metaheuristics", in Advances in Electrical and Computer Engineering, 19(1), 17-26, 2019,
[CrossRef] [Full Text] [Web of Science Times Cited 7] [SCOPUS Times Cited 7]


[36] K. Bibiks, Y-F. Hu, J-P. Li, P. Pillai, A. Smith, "Improved discrete cuckoo search for the resource-constrained project scheduling problem", in Applied Soft Computing, 69, 493-503, 2018,
[CrossRef] [Web of Science Times Cited 24] [SCOPUS Times Cited 30]


[37] M. Faddy, "Examples of fitting structured phase-type distributions", in Appl. Stoch Models Data Anal, 10, 247-255, 1994.
[CrossRef] [Web of Science Times Cited 40] [SCOPUS Times Cited 53]


[38] R. Cooper, "Introduction to queueing theory", 2nd Ed. New York, Elsevier, North Holland, 1981.

[39] F. M. Burnet, "A modification of Jerne's theory of antibody production using the concept of clonal selection", Australian Journal of Science, 1957.

[40] F. M. Burnet, "The clonal selection theory of acquired immunity", Vanderbilt University Press, 1959.
[CrossRef]


[41] J. Brownlee, "Clonal Selection Algorithms", Technical Report 070209A, Complex Intelligent Systems Laboratory (CIS), Centre for Information Technology Research (CITR), Faculty of Information and Communication Technologies (ICT), Swinburne, University of Technology, 2007.

[42] L. N. De Castro, F. J. von Zuben, "Learning and optimization using the clonal selection principle", IEEE Transactions on Evolutionary Computation, 2002.
[CrossRef] [Web of Science Times Cited 1504] [SCOPUS Times Cited 2143]


[43] L. N. de Castro, J. Timmis, "Artificial immune systems: a new computational intelligence approach", Springer, 2002.

[44] S. S. Tan, et al., "Direct cost analysis of Intensive Care Unit Stay in four European countries: applying a standardized costing methodology", Value of Health, 15, 81-86, 2012.
[CrossRef] [Web of Science Times Cited 109] [SCOPUS Times Cited 118]


[45] A. Rahmi, W. F. Mahmudy, M. Z. Sarwani, "Genetic algorithms for optimization of multi-level product distribution", Int. Journal of Artificial Intelligence, Volume 18, Number 1, pp. 135-147, 2020.

[46] A. Naseri, S. M. H. Hasheminejad, "An unsupervised gene selection method based on multiobjective ant colony optimization", Int. Journal of Artificial Intelligence, Vol. 17, Number 2, pp. 1-22, 2019.



References Weight

Web of Science® Citations for all references: 39,462 TCR
SCOPUS® Citations for all references: 16,661 TCR

Web of Science® Average Citations per reference: 840 ACR
SCOPUS® Average Citations per reference: 354 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2023-09-27 23:42 in 205 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2023
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: 


DNS Made Easy