Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.800
JCR 5-Year IF: 1.000
SCOPUS CiteScore: 2.0
Issues per year: 4
Current issue: Feb 2024
Next issue: May 2024
Avg review time: 75 days
Avg accept to publ: 48 days
APC: 300 EUR


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,459,112 unique visits
981,786 downloads
Since November 1, 2009



Robots online now
bingbot
SemanticScholar


SCOPUS CiteScore

SCOPUS CiteScore


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 24 (2024)
 
     »   Issue 1 / 2024
 
 
 Volume 23 (2023)
 
     »   Issue 4 / 2023
 
     »   Issue 3 / 2023
 
     »   Issue 2 / 2023
 
     »   Issue 1 / 2023
 
 
 Volume 22 (2022)
 
     »   Issue 4 / 2022
 
     »   Issue 3 / 2022
 
     »   Issue 2 / 2022
 
     »   Issue 1 / 2022
 
 
 Volume 21 (2021)
 
     »   Issue 4 / 2021
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
  View all issues  


FEATURED ARTICLE

Application of the Voltage Control Technique and MPPT of Stand-alone PV System with Storage, HIVZIEFENDIC, J., VUIC, L., LALE, S., SARIC, M.
Issue 1/2022

AbstractPlus


SAMPLE ARTICLES

Transformer Core Saturation Fault Analysis using Current Sensor Signals and Thermal Image Features, VIDHYA, R., VANAJA RANJAN, P., SHANKER, N. R.
Issue 4/2023

AbstractPlus

Image Forgery Detection Using Noise and Edge Weighted Local Texture Features, ASGHAR, K., SADDIQUE, M., HUSSAIN, M., BEBIS, G., HABIB, Z.
Issue 1/2022

AbstractPlus

A Novel Resource Sharing Channel Interleaver for 5G NR, LAKSHMI, J. L., JAYAKUMARI, J.
Issue 4/2023

AbstractPlus

A Strong Mutual Authentication Protocol for Securing Wearable Smart Textile Applications, DALKILIC, H., OZCANHAN, M. H.
Issue 1/2022

AbstractPlus

A Proposed Signal Reconstruction Algorithm over Bandlimited Channels for Wireless Communications, ASHOUR, A., KHALAF, A., HUSSEIN, A., HAMED, H., RAMADAN, A.
Issue 1/2023

AbstractPlus

Continuous Student Knowledge Tracing Using SVD and Concept Maps, TEODORESCU, O. M., POPESCU, P. S., MOCANU, L. M., MIHAESCU, M. C.
Issue 1/2021

AbstractPlus




LATEST NEWS

2023-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2022. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.800 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 1.000.

2023-Jun-05
SCOPUS published the CiteScore for 2022, computed by using an improved methodology, counting the citations received in 2019-2022 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2022 is 2.0. For "General Computer Science" we rank #134/233 and for "Electrical and Electronic Engineering" we rank #478/738.

2022-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2021. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.825 (0.722 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.752.

2022-Jun-16
SCOPUS published the CiteScore for 2021, computed by using an improved methodology, counting the citations received in 2018-2021 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2021 is 2.5, the same as for 2020 but better than all our previous results.

2021-Jun-30
Clarivate Analytics published the InCites Journal Citations Report for 2020. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.221 (1.053 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.961.

Read More »


    
 

  1/2021 - 7

 HIGHLY CITED PAPER 

Data-Driven Predictive Control of a Pneumatic Ankle Foot Orthosis

ULKIR, O. See more information about ULKIR, O. on SCOPUS See more information about ULKIR, O. on IEEExplore See more information about ULKIR, O. on Web of Science, AKGUN, G. See more information about  AKGUN, G. on SCOPUS See more information about  AKGUN, G. on SCOPUS See more information about AKGUN, G. on Web of Science, NASAB, A. See more information about  NASAB, A. on SCOPUS See more information about  NASAB, A. on SCOPUS See more information about NASAB, A. on Web of Science, KAPLANOGLU, E. See more information about KAPLANOGLU, E. on SCOPUS See more information about KAPLANOGLU, E. on SCOPUS See more information about KAPLANOGLU, E. on Web of Science
 
View the paper record and citations in View the paper record and citations in Google Scholar
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,450 KB) | Citation | Downloads: 963 | Views: 548

Author keywords
rehabilitation assistance, ankle-foot orthosis, subspace identification, PID, data-driven predictive control

References keywords
foot(25), control(25), ankle(23), orthosis(22), design(12), systems(10), rehabilitation(8), predictive(7), active(7), driven(6)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2021-02-28
Volume 21, Issue 1, Year 2021, On page(s): 65 - 74
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2021.01007
Web of Science Accession Number: 000624018800007
SCOPUS ID: 85102782699

Abstract
Quick view
Full text preview
We present the design and control of a pneumatic ankle-foot orthosis (P-AFO) device powered via bi-directional pneumatic rotary actuator and a pneumatic artificial muscle for rehabilitation assistance and treatment of neuromuscular disorders. The rotary actuator and the pneumatic muscle assist with dorsiflexion and plantar flexion, respectively. The prototype is also equipped with simple sensor system for gait pattern analysis. The P-AFO has the capability of 20 degrees dorsiflexion from the plantar flexion and 12 degrees dorsiflexion from the neutral position of an ankle joint. The data-driven predictive control (DDPC) algorithm has been designed for P-AFO to follow desired gait cycle trajectories while rectifying the nonlinearity and uncertainties of the pneumatic actuators. The design of DDPC is realized from the subspace identification matrices acquired by the input-output values obtained as a result of an open-loop operation. The control structure is completely data-based without certain use of a model in the control implementation. In order to control the developed P-AFO prototype device, the suggested controller was implemented in a real-time operating system. Experimental studies are performed to compare the proposed controller with a three-term controller (PID) in trajectory tracking of the P-AFO.


References | Cited By  «-- Click to see who has cited this paper

[1] A. Dogan, M. Mengulluoglu, N. Ozgirgin, "Evaluation of the effect of ankle-foot orthosis use on balance and mobility in hemiparetic stroke patients," European Journal of Physical and Rehabilitation Medicine, vol. 33, no. 15-16, pp. 1433-1439, 2011.
[CrossRef] [Web of Science Times Cited 62]


[2] P. R. G. Lucareli, M. D. O. Lima, J. G. D. A. Lucarelli, F. P. S. Lima, "Changes in joint kinematics in children with cerebral palsy while walking with and without a floor reaction ankle-foot orthosis," Clinics, vol. 62, no. 1, pp. 63-68, 2007.
[CrossRef]


[3] S. J. Korzeniewski, J. Slaughter, M. Lenski, P. Haak, N. Paneth, "The complex aetiology of cerebral palsy," Nature Reviews Neurology, vol. 14, no. 528-543, pp. 528-543, 2018.
[CrossRef] [Web of Science Times Cited 133]


[4] A. Cullell, J. C. Moreno, E. Rocon, A. Forner-Cordero, J. L. Pons, "Biologically based design of an actuator system for a knee-ankle-foot orthosis," Mechanism and Machine Theory, vol. 44, no. 4, pp. 860-872, 2009.
[CrossRef] [Web of Science Times Cited 58]


[5] M. Nevisipour, C. F. Honeycutt, "The impact of ankle-foot-orthosis (AFO) use on the compensatory stepping response required to avoid a fall during trip-like perturbations in young adults: Implications for AFO prescription and design," Journal of Biomechanics, vol 103,2020,
[CrossRef] [Web of Science Times Cited 7]


[6] L. G. Stansbury, S. J. Lalliss, J. G. Branstetter, M. R. Bagg, J. B. Holcomb, "Amputations in US military personnel in the current conflicts in Afghanistan and Iraq," Journal of Orthopaedic Trauma, vol. 22, no. 1, pp. 43-46, 2008.
[CrossRef] [Web of Science Times Cited 116]


[7] D. J. Weber, R. B. Stein, K. M. Chan, G. Loeb, F. Richmond, R. Rolf, S. L. Chong, "BIONic walk aide for correcting foot drop," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 13, no. 2, pp. 242-246, 2005.
[CrossRef] [Web of Science Times Cited 57]


[8] M. S. Poboroniuc, D. E. Wood, R. Riener, N. N. Donaldson, "A new controller for FES-assisted sitting down in paraplegia," Advances in Electrical and Computer Engineering, vol.10, no.4, pp.9-16, 2010,
[CrossRef] [Full Text] [Web of Science Times Cited 13]


[9] C. A. Byrne, D. T. O'keeffe, A. E. Donnelly, G. M. Lyons, "Effect of walking speed changes on tibialis anterior EMG during healthy gait for FES envelope design in drop foot correction," Journal of Electromyography and Kinesiology, vol. 17, no. 5, pp. 605-616, 2007.
[CrossRef] [Web of Science Times Cited 56]


[10] R. Chin, E. T. Hsiao-Wecksler, E. Loth, G. Kogler, S. D. Manwaring, S. N. Tyson, J. N. Gilmer, "A Pneumatic power harvesting ankle-foot orthosis to prevent foot-drop," Journal of Neuroengineering and Rehabilitation, vol. 6, no. 19, pp. 1-11, 2009.
[CrossRef] [Web of Science Times Cited 56]


[11] S. Pittaccio, L. Garavaglia, C. Ceriotti, F. Passaretti, "Applications of shape memory alloys for neurology and neuromuscular rehabilitation," Journal of Functional Biomaterials, vol. 6, no. 2, pp. 328-344, 2015.
[CrossRef] [Web of Science Times Cited 21]


[12] S. Telfer, J. Pallari, J. Munguia, K. Dalgarno, M. McGeough, J. Woodburn, "Embracing additive manufacture: implications for foot and ankle orthosis design," BMC Musculoskeletal Disorders, vol. 13, no. 84, pp. 1-9, 2012.
[CrossRef] [Web of Science Times Cited 69]


[13] J. A. Blaya, H. Herr, "Adaptive Control of a variable-impedance ankle-foot orthosis to assist drop-foot gait," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 12, no. 1, pp. 24-31, 2004.
[CrossRef] [Web of Science Times Cited 518]


[14] A. W. Boehler, K. W. Hollander, T. G. Sugar, D. Shin, "Design, implementation and test results of a robust control method for a powered ankle foot orthosis (AFO)," IEEE International Conference on Robotics and Automation, pp. 2025-2030, 2008.
[CrossRef] [Web of Science Times Cited 52]


[15] D. P. Ferris, K. E. Gordon, G. S. Sawicki, A. Peethambaran, "An improved powered ankle-poot orthosis using proportional myoelectric control," Gait & Posture, vol. 23, no. 4, pp. 425-428, 2006.
[CrossRef] [Web of Science Times Cited 233]


[16] D. H. Kuettel III, "Pulley optimization for a walking-engine-actuated active ankle-foot orthosis," Journal of Young Investigators, vol. 31, no. 5, pp. 32-38, 2016.
[CrossRef]


[17] Y. Savas, O. Kirtas, H. Basturk, E. Samur, "A backstepping control design for an active ankle-foot orthosis," IEEE 56th Annual Conference on Decision and Control (CDC), pp. 262-267, 2007.
[CrossRef]


[18] B. C. Neubauer, J. Nath, W. K. Durfee, "Design of a portable hydraulic ankle-foot orthosis," 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1182-1185, 2014.
[CrossRef]


[19] M. Noel, B. Cantin, S. Lambert, C. M. Gosselin, L. J. Bouyer, "An electrohydraulic actuated ankle foot orthosis to generate force fields and to test proprioceptive reflexes during human walking," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 16, no. 4, pp. 390-399, 2008.
[CrossRef] [Web of Science Times Cited 54]


[20] O. Ulkir, G. Akgun, E. Toptas, and E. Kaplanoglu, "Design and myoelectric control of an active orthosis device using finite state machine algorithm", Technium, vol. 2, no. 7, pp. 286-296, Nov. 2020.
[CrossRef]


[21] C. M. Thalman, T. Hertzell and H. Lee, "Toward a soft robotic ankle-foot orthosis (SR-AFO) exosuit for human locomotion: preliminary results in late stance plantarflexion assistance," 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft), New Haven, CT, USA, 2020, pp. 801-807,
[CrossRef] [Web of Science Times Cited 22]


[22] Z. Wang, E. T. Hsiao-Wecksler, "Design of a compact high-torque actuation system for portable powered ankle-foot orthosis," Journal of Medical Devices, vol. 10, no. 3, pp. 1-3, 2016.
[CrossRef] [Web of Science Times Cited 3]


[23] R. Jimenez-Fabian, O. Verlinden, "Review of control algorithms for robotic ankle systems in lower-limb orthoses, prostheses, and exoskeletons," Medical Engineering & Physics, vol. 34, no. 4, pp. 397-408, 2012.
[CrossRef] [Web of Science Times Cited 212]


[24] M. R. Tucker, J. Olivier, A. Pagel, H. Bleuler, M. Bouri, O. Lambercy, R. Gassert, "Control strategies for active lower extremity prosthetics and orthotics: a review," Journal of Neuroengineering and Rehabilitation, vol. 12, no. 1, pp. 1-29, 2015.
[CrossRef] [Web of Science Times Cited 535]


[25] A. Agrawal, V. Sangwan, S. K. Banala, S. K. Agrawal, S. A. Binder-Macleod, "Design of a novel two degree-of-freedom ankle-foot orthosis," Journal of Mechanical Design, vol. 129, no. 11, pp. 1137-1143, 2007.
[CrossRef] [Web of Science Times Cited 25]


[26] V. Arnez-Paniagua, H. Rifai, Y. Amirat, M. Ghedira, J. M. Gracies, S. Mohammed, "Adaptive control of an actuated ankle foot orthosis for paretic patients," Control Engineering Practice, vol. 90, no. 1, pp. 207-220, 2019.
[CrossRef] [Web of Science Times Cited 17]


[27] J. F. Guerrero-Castellanos, H. Rifai, V. Arnez-Paniagua, J. Linares-Flores, L. Saynes-Torres, S. Mohammed, "Robust active disturbance rejection control via control Lyapunov functions: Application to actuated-ankle-foot-orthosis," Control Engineering Practice, vol. 80, no. 2, pp. 49-60, 2018.
[CrossRef] [Web of Science Times Cited 37]


[28] W. Huo, V. Arnez-Paniagua, G. Ding, Y. Amirat, S. Mohammed, "Adaptive proxy-based controller of an active ankle foot orthosis to assist lower limb movements of paretic patients," Robotica, vol. 37, no. 12, pp. 2147-2164, 2019.
[CrossRef] [Web of Science Times Cited 19]


[29] Y. Xia, W. Xie, B. Liu, X. Wang, "Data-driven predictive control for networked control systems," Information Sciences, vol. 235, pp. 45-54, 2013.
[CrossRef] [Web of Science Times Cited 83]


[30] O. Ulkir, G. Akgun, E. Kaplanoglu, "Real-time implementation of data-driven predictive controller for an artificial muscle," Studies in Informatics and Control, vol. 28, no. 2, pp. 189-200, 2019.
[CrossRef] [Web of Science Times Cited 4]


[31] J. Berberich, J. Koehler, M. A. Muller and F. Allgower, "Data-driven model predictive control with stability and robustness guarantees," in IEEE Transactions on Automatic Control,
[CrossRef] [Web of Science Times Cited 243]


[32] F. Smarra, A. Jain, T. De Rubeis, D. Ambrosini, A. D'Innocenzo, R. Mangharam, "Data-driven model predictive control using random forests for building energy optimization and climate control," Applied Energy, vol. 226, pp. 1252-1272, 2018.
[CrossRef] [Web of Science Times Cited 196]


[33] Z. Hou, S. Liu, T. Tian, "Lazy-learning-based data-driven model-free adaptive predictive control for a class of discrete-time nonlinear systems," IEEE Transactions on Neural Networks and Learning Systems, vol. 28, no. 8, pp. 1914-1928.
[CrossRef] [Web of Science Times Cited 76]


[34] P. Van Overschee, B. L. De Moor, "Subspace identification for linear systems: theory-implementation-applications," pp. 1-272, Springer Science & Business Media, 2012

[35] R. Kadali, B. Huang, A. Rossiter, "A data driven subspace approach to predictive controller design," Control Engineering Practice, vol. 11, no. 3, pp. 261-278.
[CrossRef] [Web of Science Times Cited 150]


[36] A. H. Gonzalez, A. Ferramosca, G. A. Bustos, J. L. Marchetti, M. Fiacchini, D. Odloak, "Model predictive control suitable for closed-loop re-identification," Systems & Control Letters, vol. 69, pp. 23-33, 2014.
[CrossRef] [Web of Science Times Cited 25]


[37] N. Rao, G. Chaudhuri, D. Hasso, K. D'Souza, J. Wening, C. Carlson, A. S. Aruin, "Gait assessment during the initial fitting of an ankle foot orthosis in individuals with stroke," Disability and Rehabilitation: Assistive technology, vol. 3, no. 4, pp. 201-207, 2007.
[CrossRef] [Web of Science Times Cited 19]


[38] Y. L. Park, B. R. Chen, D. Young, L. Stirling, R. J. Wood, E. Goldfield, R. Nagpal, "Bio-inspired active soft orthotic device for ankle foot pathologies," IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4488-4495, 2011.
[CrossRef]


[39] J. Zhang, Y. Yin, J. Zhu, "Sigmoid-based hysteresis modeling and high-speed tracking control of sma-artificial muscle," Sensors and Actuators A: Physical, vol. 201, pp. 264-273, 2013.
[CrossRef] [Web of Science Times Cited 27]


[40] M. Vivian, M. Reggiani, J. C. Moreno, J. L. Pons, D. Farina, M. Sartori, "A dynamically consistent model of a motorized ankle-foot orthosis," 6th International IEEE/EMBS Conference on Neural Engineering (NER), pp. 1558-1561, 2013.
[CrossRef]


References Weight

Web of Science® Citations for all references: 3,198 TCR
SCOPUS® Citations for all references: 0

Web of Science® Average Citations per reference: 80 ACR
SCOPUS® Average Citations per reference: 0

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2024-02-26 17:41 in 222 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2024
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: 


DNS Made Easy