Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 1.221
JCR 5-Year IF: 0.961
SCOPUS CiteScore: 2.5
Issues per year: 4
Current issue: May 2021
Next issue: Aug 2021
Avg review time: 91 days


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

1,681,944 unique visits
543,766 downloads
Since November 1, 2009



Robots online now
Googlebot
PetalBot


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 21 (2021)
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
 Volume 20 (2020)
 
     »   Issue 4 / 2020
 
     »   Issue 3 / 2020
 
     »   Issue 2 / 2020
 
     »   Issue 1 / 2020
 
 
 Volume 19 (2019)
 
     »   Issue 4 / 2019
 
     »   Issue 3 / 2019
 
     »   Issue 2 / 2019
 
     »   Issue 1 / 2019
 
 
 Volume 18 (2018)
 
     »   Issue 4 / 2018
 
     »   Issue 3 / 2018
 
     »   Issue 2 / 2018
 
     »   Issue 1 / 2018
 
 
 Volume 17 (2017)
 
     »   Issue 4 / 2017
 
     »   Issue 3 / 2017
 
     »   Issue 2 / 2017
 
     »   Issue 1 / 2017
 
 
  View all issues  








LATEST NEWS

2021-Jun-30
Clarivate Analytics published the InCites Journal Citations Report for 2020. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.221 (1.053 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.961.

2021-Jun-06
SCOPUS published the CiteScore for 2020, computed by using an improved methodology, counting the citations received in 2017-2020 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering in 2020 is 2.5, better than all our previous results.

2021-Apr-15
Release of the v3 version of AECE Journal website. We moved to a new server and implemented the latest cryptographic protocols to assure better compatibility with the most recent browsers. Our website accepts now only TLS 1.2 and TLS 1.3 secure connections.

2020-Jun-29
Clarivate Analytics published the InCites Journal Citations Report for 2019. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.102 (1.023 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.734.

2020-Jun-11
Starting on the 15th of June 2020 we wiil introduce a new policy for reviewers. Reviewers who provide timely and substantial comments will receive a discount voucher entitling them to an APC reduction. Vouchers (worth of 25 EUR or 50 EUR, depending on the review quality) will be assigned to reviewers after the final decision of the reviewed paper is given. Vouchers issued to specific individuals are not transferable.

Read More »


    
 

  2/2021 - 6

A Novel Steerable Filter in the Frequency Domain: The Rose Curve Filter

MINTEMUR, O. See more information about MINTEMUR, O. on SCOPUS See more information about MINTEMUR, O. on IEEExplore See more information about MINTEMUR, O. on Web of Science, KAYA, H. See more information about  KAYA, H. on SCOPUS See more information about  KAYA, H. on SCOPUS See more information about KAYA, H. on Web of Science, DEMIRCI, R. See more information about DEMIRCI, R. on SCOPUS See more information about DEMIRCI, R. on SCOPUS See more information about DEMIRCI, R. on Web of Science
 
View the paper record and citations in View the paper record and citations in Google Scholar
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (2,318 KB) | Citation | Downloads: 144 | Views: 141

Author keywords
feature extraction, filtering, Fourier transforms, image processing, pattern recognition

References keywords
image(10), recognition(8), processing(7), transform(6), contourlet(6), pattern(5), method(5), domain(5), design(5), yang(4)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2021-05-31
Volume 21, Issue 2, Year 2021, On page(s): 49 - 58
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2021.02006
Web of Science Accession Number: 000657126200006
SCOPUS ID: 85107618537

Abstract
Quick view
Full text preview
Feature extraction in image processing is a difficult task. To do this, a filter bank is one of the most used techniques. To extract a feature, the image is masked with filters in prepared filter banks, one by one. If a greater number of features can be extracted from an image, the task is easier. Thus, identifying more features is desirable in many image processing applications. However, filter preparation can be troublesome because of the difficulties in determining a filters parameters such as direction. Limitations of the selected filter are another issue. Thus, an easy-to-use filter with few parameters and directional flexibility is a desirable choice. For these reasons, a novel steerable type of filter is proposed in this study. The proposed rose curve filter uses Lemniscate shapes derived from the rose curves to extract image features in the frequency domain. It has three parameters, fewer than other filters, and has directional flexibility. It can also extract images in more than one direction. Experimental results show that it is effective in feature extraction during image processing.


References | Cited By  «-- Click to see who has cited this paper

[1] G. Kumar and P. K. Bhatia, "A detailed review of feature extraction in image processing systems," in 2014 Fourth International Conference on Advanced Computing Communication Technologies, Feb. 2014, pp. 5-12.
[CrossRef] [Web of Science Times Cited 80] [SCOPUS Times Cited 177]


[2] S. Arivazhagan and L. Ganesan, "Texture classification using wavelet transform," Pattern Recognition Letters, vol. 24, no. 9, pp. 1513-1521, Jun. 2003.
[CrossRef] [Web of Science Times Cited 331] [SCOPUS Times Cited 418]


[3] Yang Bai, Lihua Guo, Lianwen Jin and Qinghua Huang, "A novel feature extraction method using pyramid histogram of orientation gradients for smile recognition," 2009 16th IEEE International Conference on Image Processing (ICIP), Cairo, 2009, pp. 3305-3308.
[CrossRef] [SCOPUS Times Cited 97]


[4] Priyanka and D. Kumar, "Feature extraction and selection of kidney ultrasound images using GLCM and PCA," Procedia Computer Science, vol. 167, pp. 1722-1731, Jan. 2020.
[CrossRef] [Web of Science Times Cited 6] [SCOPUS Times Cited 11]


[5] Wenshuo Gao, Xiaoguang Zhang, Lei Yang and Huizhong Liu, "An improved Sobel edge detection," 2010 3rd International Conference on Computer Science and Information Technology, Chengdu, 2010, pp. 67-71.
[CrossRef] [SCOPUS Times Cited 227]


[6] S. E. El-Khamy, M. Lotfy and N. El-Yamany, "A modified fuzzy Sobel edge detector," Proceedings of the Seventeenth National Radio Science Conference. 17th NRSC'2000 (IEEE Cat. No.00EX396), Minufiya, Egypt, 2000, pp. C32/1-C32/9.
[CrossRef] [SCOPUS Times Cited 28]


[7] Q. Ying-Dong, C. Cheng-Song, C. San-Ben, and L. Jin-Quan, "A fast subpixel edge detection method using Sobel-Zernike moments operator," Image and Vision Computing, vol. 23, no. 1, pp. 11-17, Jan. 2005.
[CrossRef] [Web of Science Times Cited 135] [SCOPUS Times Cited 201]


[8] R. H. Bamberger and M. J. T. Smith, "A filter bank for the directional decomposition of images: theory and design," in IEEE Transactions on Signal Processing, vol. 40, no. 4, pp. 882-893, April 1992.
[CrossRef] [Web of Science Times Cited 585] [SCOPUS Times Cited 822]


[9] S. Chakrabarti and S. K. Mitra, "Design of two-dimensional digital filters via spectral transformations," in Proceedings of the IEEE, vol. 65, no. 6, pp. 905-914, June 1977.
[CrossRef] [Web of Science Times Cited 41] [SCOPUS Times Cited 48]


[10] L. Harn and B. Shenoi, "Design of stable two-dimensional IIR filters using digital spectral transformations," in IEEE Transactions on Circuits and Systems, vol. 33, no. 5, pp. 483-490, May 1986.
[CrossRef] [Web of Science Times Cited 36] [SCOPUS Times Cited 48]


[11] M. N. Do and M. Vetterli, "The contourlet transform: an efficient directional multiresolution image representation," in IEEE Transactions on Image Processing, vol. 14, no. 12, pp. 2091-2106, Dec. 2005.
[CrossRef] [Web of Science Times Cited 2384] [SCOPUS Times Cited 3461]


[12] V. Velisavljevic, B. Beferull-Lozano, M. Vetterli, and P. L. Dragotti, "Directionlets: anisotropic multidirectional representation with separable filtering," IEEE Transactions on Image Processing, vol. 15, no. 7, pp. 1916-1933, Jul. 2006.
[CrossRef] [Web of Science Times Cited 171] [SCOPUS Times Cited 249]


[13] N. Ito, "Efficient design of two-dimensional diamond-shaped filters," in 2010 International Symposium on Intelligent Signal Processing and Communication Systems, Dec. 2010, pp. 1-4.
[CrossRef] [SCOPUS Times Cited 2]


[14] D. V. Tosic, A. Mojsilovic, and M. Popovic, "Symbolic approach to 2D biorthogonal diamond-shaped filter design," in 1997 21st International Conference on Microelectronics. Proceedings, Sep. 1997, vol. 2, pp. 709-712 vol. 2.
[CrossRef]


[15] J. Ma and G. Plonka, "The curvelet transform," IEEE Signal Processing Magazine, vol. 27, no. 2, pp. 118-133, Mar. 2010.
[CrossRef] [Web of Science Times Cited 237] [SCOPUS Times Cited 312]


[16] A. Ebrahimzadeh, "An efficient technique for classification of electrocardiogram signals," Adv. Electr. Comp. Eng., vol. 9, no. 3, Art. no. 3, Oct. 2009.
[CrossRef] [Full Text] [Web of Science Times Cited 14] [SCOPUS Times Cited 20]


[17] Y. Liu, C. Zhang, J. Cheng, X. Chen, and Z. J. Wang, "A multi-scale data fusion framework for bone age assessment with convolutional neural networks," Computers in Biology and Medicine, vol. 108, pp. 161-173, May 2019.
[CrossRef] [Web of Science Times Cited 9] [SCOPUS Times Cited 9]


[18] N. G. Chitaliya and A. I. Trivedi, "An efficient method for face feature extraction and recognition based on contourlet transforms and principal component analysis," Procedia Computer Science, vol. 2, pp. 52-61, Jan. 2010.
[CrossRef] [Web of Science Times Cited 14] [SCOPUS Times Cited 15]


[19] M. Yin, W. Liu, X. Zhao, Q.-W. Guo, and R.-F. Bai, "Image denoising using trivariate prior model in nonsubsampled dual-tree complex contourlet transform domain and non-local means filter in spatial domain," Optik, vol. 124, no. 24, pp. 6896-6904, Dec. 2013.
[CrossRef] [Web of Science Times Cited 19] [SCOPUS Times Cited 29]


[20] D. Li, L. Zhang, J. Yang, and W. Su, "Research on wavelet-based contourlet transform algorithm for adaptive optics image denoising," Optik, vol. 127, no. 12, pp. 5029-5034, Jun. 2016.
[CrossRef] [Web of Science Times Cited 16] [SCOPUS Times Cited 25]


[21] D. Guo and J. Chen, "The application of contourlet transform to image denoising," Procedia Engineering, vol. 15, pp. 2333-2338, Dec. 2011.
[CrossRef] [Web of Science Times Cited 3] [SCOPUS Times Cited 4]


[22] L. Li, X. Yuan, Z. Lu, and J.-S. Pan, "Rotation invariant watermark embedding based on scale-adapted characteristic regions," Information Sciences, vol. 180, no. 15, pp. 2875-2888, Aug. 2010.
[CrossRef] [Web of Science Times Cited 32] [SCOPUS Times Cited 41]


[23] S. Etemad and M. Amirmazlaghani, "A new multiplicative watermark detector in the contourlet domain using t Location-Scale distribution," Pattern Recognition, vol. 77, pp. 99-112, May 2018.
[CrossRef] [Web of Science Times Cited 24] [SCOPUS Times Cited 29]


[24] Y. Chen, J. Xiong, H. Liu, and Q. Fan, "Fusion method of infrared and visible images based on neighborhood characteristic and regionalization in NSCT domain," Optik, vol. 125, no. 17, pp. 4980-4984, Sep. 2014.
[CrossRef] [Web of Science Times Cited 25] [SCOPUS Times Cited 31]


[25] X. Yang, W. Xu, R. Luo, X. Zheng, and K. Liu, "Robustly reconstructing magnetic resonance images via structure decomposition," Magnetic Resonance Imaging, vol. 57, pp. 165-175, Apr. 2019.
[CrossRef] [Web of Science Times Cited 1] [SCOPUS Times Cited 1]


[26] O. Mintemur, R. Demirci, and H. Kaya, "Directional image filter using rose curve in frequency domain," in 2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Oct. 2019, pp. 1-4.
[CrossRef] [SCOPUS Times Cited 1]


[27] E. J. Wood, "Applying Fourier and associated transforms to pattern characterization in textiles," Textile Research Journal, vol. 60, no. 4, pp. 212-220, Apr. 1990.
[CrossRef] [Web of Science Times Cited 138] [SCOPUS Times Cited 169]


[28] J. G. Daugman, "Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters," J. Opt. Soc. Am. A, JOSAA, vol. 2, no. 7, pp. 1160-1169, Jul. 1985.
[CrossRef] [Web of Science Times Cited 1955] [SCOPUS Times Cited 2417]


[29] Y. Yuan, J. Zhang, and Q. Wang, "Deep Gabor convolution network for person re-identification," Neurocomputing, vol. 378, pp. 387-398, Feb. 2020.
[CrossRef] [Web of Science Times Cited 7] [SCOPUS Times Cited 7]


[30] X. Sun, P. Xia, L. Zhang, and L. Shao, "A ROI-guided deep architecture for robust facial expressions recognition," Information Sciences, vol. 522, pp. 35-48, Jun. 2020.
[CrossRef] [Web of Science Times Cited 6] [SCOPUS Times Cited 8]


[31] I. Dagher, E. Dahdah, and M. Al Shakik, "Facial expression recognition using three-stage support vector machines," Vis Comput Ind Biomed Art, vol. 2, no. 1, p. 24, Dec. 2019.
[CrossRef] [SCOPUS Times Cited 3]


[32] R. R. K. Dewi, F. Sthevanie, and A. Arifianto, "Face expression recognition using Local Gabor Binary Pattern Three Orthogonal Planes (LGBP-TOP) and Support Vector Machine (SVM) method," J. Phys.: Conf. Ser., vol. 1192, p. 012048, Mar. 2019.
[CrossRef] [Web of Science Times Cited 1] [SCOPUS Times Cited 3]


[33] Y. Sun and J. Yu, "Facial expression recognition by fusing Gabor and Local Binary Pattern features," in MultiMedia Modeling, Cham, 2017, pp. 209-220.
[CrossRef] [Web of Science Times Cited 8] [SCOPUS Times Cited 8]




References Weight

Web of Science® Citations for all references: 6,278 TCR
SCOPUS® Citations for all references: 8,921 TCR

Web of Science® Average Citations per reference: 185 ACR
SCOPUS® Average Citations per reference: 262 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2021-07-23 06:49 in 207 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2021
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: