Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.700
JCR 5-Year IF: 0.700
SCOPUS CiteScore: 1.8
Issues per year: 4
Current issue: Aug 2024
Next issue: Nov 2024
Avg review time: 58 days
Avg accept to publ: 60 days
APC: 300 EUR


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,791,612 unique visits
1,101,208 downloads
Since November 1, 2009



Robots online now
bingbot


SCOPUS CiteScore

SCOPUS CiteScore


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 24 (2024)
 
     »   Issue 3 / 2024
 
     »   Issue 2 / 2024
 
     »   Issue 1 / 2024
 
 
 Volume 23 (2023)
 
     »   Issue 4 / 2023
 
     »   Issue 3 / 2023
 
     »   Issue 2 / 2023
 
     »   Issue 1 / 2023
 
 
 Volume 22 (2022)
 
     »   Issue 4 / 2022
 
     »   Issue 3 / 2022
 
     »   Issue 2 / 2022
 
     »   Issue 1 / 2022
 
 
 Volume 21 (2021)
 
     »   Issue 4 / 2021
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
  View all issues  


FEATURED ARTICLE

Analysis of the Hybrid PSO-InC MPPT for Different Partial Shading Conditions, LEOPOLDINO, A. L. M., FREITAS, C. M., MONTEIRO, L. F. C.
Issue 2/2022

AbstractPlus


SAMPLE ARTICLES

Power Optimization in Hybrid Renewable Energy Standalone System using SMC-ANFIS, KALVINATHAN, V., CHITRA, S.
Issue 3/2022

AbstractPlus

A New Visual Cryptography Method Based on the Profile Hidden Markov Model, OZCAN, H., KAYA GULAGIZ, F., ALTUNCU, M. A., ILKIN, S., SAHIN, S.
Issue 1/2021

AbstractPlus

NARA: Network Assisted Routing and Allocation Algorithm for D2D Communication in 5G Cellular Networks, BASTOS, A. V., da SILVA, C. M., da SILVA Junior, D. C.
Issue 4/2021

AbstractPlus

A Security-Driven Approach for Energy-Aware Cloud Resource Pricing and Allocation, MIKAVICA, B., KOSTIC-LJUBISAVLJEVIC, A.
Issue 4/2021

AbstractPlus

New Results on the IC_AOMDV Protocol for Vehicular Ad Hoc Networks in Urban Areas, de ASSIS, D. R., WILLE, E. C. G., ALVES JUNIOR, J.
Issue 3/2023

AbstractPlus

Lossy Compression using Adaptive Polynomial Image Encoding, OTHMAN, S., MOHAMED, A., ABOUALI, A., NOSSAIR, Z.
Issue 1/2021

AbstractPlus




LATEST NEWS

2024-Jun-20
Clarivate Analytics published the InCites Journal Citations Report for 2023. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.700 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.600.

2023-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2022. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.800 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 1.000.

2023-Jun-05
SCOPUS published the CiteScore for 2022, computed by using an improved methodology, counting the citations received in 2019-2022 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2022 is 2.0. For "General Computer Science" we rank #134/233 and for "Electrical and Electronic Engineering" we rank #478/738.

2022-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2021. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.825 (0.722 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.752.

2022-Jun-16
SCOPUS published the CiteScore for 2021, computed by using an improved methodology, counting the citations received in 2018-2021 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2021 is 2.5, the same as for 2020 but better than all our previous results.

Read More »


    
 

  3/2021 - 12

A Power Electronic Traction Transformer Model for a New Medium Voltage DC Electric Railway

FERENCZ, I. See more information about FERENCZ, I. on SCOPUS See more information about FERENCZ, I. on IEEExplore See more information about FERENCZ, I. on Web of Science, PETREUS, D. See more information about PETREUS, D. on SCOPUS See more information about PETREUS, D. on SCOPUS See more information about PETREUS, D. on Web of Science
 
View the paper record and citations in View the paper record and citations in Google Scholar
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (2,117 KB) | Citation | Downloads: 951 | Views: 1,842

Author keywords
DC-DC power converters, traction power supplies, railway engineering, modular construction, Silicon carbide

References keywords
power(20), system(8), railway(8), traction(7), voltage(6), ecce(6), converter(6), control(6), high(5), energy(5)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2021-08-31
Volume 21, Issue 3, Year 2021, On page(s): 99 - 108
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2021.03012
Web of Science Accession Number: 000691632000012
SCOPUS ID: 85114794063

Abstract
Quick view
Full text preview
All state-of-the-art Power Electronic Traction transformers (PETT) were developed for the existent Medium Voltage (MV) AC Electric Railway Systems (ERS). This work, however, presents a PETT for a novel MVDC-ERS. We studied and evaluated various state-of-the-art PETT topologies in two previous articles to determine which is best for this application, and we presented an 8-module Input Series Output Parallel (ISOP) MVDC PETT with a total power exceeding 1.2 MW. The converter topology used in the modules is the Dual Active Bridge (DAB). In this paper, the complete mathematical model of the converter, the deduction of controller parameters and the decoupling method, and the simulation model are presented in detail. Simulations show how the system works and interacts with a traction motor, as well as its response to input voltage variation and load steps. The results and theoretical notions obtained in this project will lay the foundation of a novel smart MVDC-ERS, meanwhile an experimental prototype is under development.


References | Cited By  «-- Click to see who has cited this paper

[1] I. Ferencz, D. Petreus and P. Tricoli, "A Power Electronic Traction Transformer for a Medium Voltage DC Electric Railway System," 2021 44th International Spring Seminar on Electronics Technology (ISSE), pp. 1-6, 2021,
[CrossRef] [Web of Science Times Cited 2] [SCOPUS Times Cited 4]


[2] M. Brenna, F. Foiadelli, and D. Zaninelli, "Electrical railway transportation systems", Ch 1, pp. 3-4, Wiley, 2018.
[CrossRef]


[3] I. Ferencz, D. Petreus, and P. Tricoli, "Converter Topologies for MVDC Traction Transformers," 2020 IEEE 26th Int. Symp. Des. Technol. Electron. Packag., pp. 362-367, 2020,
[CrossRef] [Web of Science Times Cited 6] [SCOPUS Times Cited 8]


[4] D. Serrano-Jimenez, L. Abrahamsson, S. Castano-Solis, J. Sanz-Feito, "Electrical railway power supply systems: Current situation and future trends", International Journal of Electrical Power & Energy Systems, Volume 92, 2017, pp 181-192,
[CrossRef] [Web of Science Times Cited 66] [SCOPUS Times Cited 93]


[5] D. Laousse, C. Brogard, H. Caron, and C. Courtois, "Direct current - A future under which conditions?," Elektrische Bahnen, vol. 114, pp. 260-275, 2016.

[6] H. Shigeeda, H. Morimoto, K. Ito, T. Fujii, and N. Morishima, "Feeding-loss Reduction by Higher-voltage DC Railway Feeding System with DC-to-DC Converter," 2018 Int. Power Electron. Conf. (IPEC), pp. 2540-2546, 2018,
[CrossRef] [SCOPUS Times Cited 9]


[7] A. Gomez-Exposito, J. M. Mauricio, and J. M. Maza-Ortega, "VSC-Based MVDC railway electrification system," IEEE Trans. Power Deliv., vol. 29, no. 1, pp. 422-431, 2014,
[CrossRef] [Web of Science Times Cited 106] [SCOPUS Times Cited 122]


[8] A. Verdicchio, P. Ladoux, H. Caron, and S. Sanchez, "Future DC Railway Electrification System - Go for 9 kV," 2018 IEEE Int. Conf. Electr. Syst. Aircraft, Railw. Sh. Propuls. Road Veh. Int. Transp. Electrif. Conf., pp. 1-5, 2018,
[CrossRef] [SCOPUS Times Cited 26]


[9] A. Verdicchio, P. Ladoux, H. Caron, and C. Courtois, "New Medium-Voltage DC Railway Electrification System," IEEE Trans. Transp. Electrif., vol. 4, no. 2, pp. 591-604, 2018,
[CrossRef] [SCOPUS Times Cited 86]


[10] J. Feng, W. Q. Chu, Z. Zhang, and Z. Q. Zhu, "Power Electronic Transformer-Based Railway Traction Systems: Challenges and Opportunities," IEEE J. Emerg. Sel. Top. Power Electron., vol. 5, no. 3, pp. 1237-1253, 2017,
[CrossRef] [Web of Science Times Cited 138] [SCOPUS Times Cited 197]


[11] T. Gherman, D. Petreus, and M. N. Cirstea, "A real time simulator of a phase shifted converter for high frequency applications," Adv. Electr. Comput. Eng., vol. 20, no. 3, pp. 11-22, 2020,
[CrossRef] [Full Text] [Web of Science Times Cited 3] [SCOPUS Times Cited 3]


[12] D. Petreus, S. Daraban, and M. Cirstea, "Modular hybrid energy concept employing a novel control structure based on a simple analog system," Adv. Electr. Comput. Eng., vol. 16, no. 2, pp. 3-10, 2016,
[CrossRef] [Full Text] [Web of Science Times Cited 5] [SCOPUS Times Cited 5]


[13] R. Giri, V. Choudhary, R. Ayyanar, and N. Mohan, "Common-duty-ratio control of input-series connected modular DC-DC converters with active input voltage and load-current sharing," IEEE Trans. Ind. Appl., vol. 42, no. 4, pp. 1101-1111, 2006,
[CrossRef] [Web of Science Times Cited 233] [SCOPUS Times Cited 298]


[14] P. Zumel, L. Ortega, A. Lazaro, C. Fernandez, and A. Barrado, "Control strategy for modular dual active bridge input series output parallel," 2013 IEEE 14th Work. Control Model. Power Electron. (COMPEL), 2013,
[CrossRef] [SCOPUS Times Cited 62]


[15] A. R. Alonso, J. Sebastian, D. G. Lamar, M. M. Hernando, and A. Vazquez, "An overall study of a Dual Active Bridge for bidirectional DC/DC conversion," 2010 IEEE Energy Convers. Congr. Expo. ECCE 2010 - Proc., pp. 1129-1135, 2010,
[CrossRef] [SCOPUS Times Cited 271]


[16] K. George, "Design and Control of a Bidirectional Dual Active Bridge DC-DC Converter to Interface Solar, Battery Storage, and Grid-Tied Inverters," Univ. Arkansas, thesis, 2015.

[17] C. Luca, M. Dragan, M. Paolo, and Z. Regan, "Digital Control of High-Frequency Switched-Mode Power Converters", Ch 4.2, pp. 173-175, Wiley-IEEE Press, 2015.
[CrossRef] [Web of Science Times Cited 94] [SCOPUS Times Cited 192]


[18] P. Zumel et al., "Analysis and modeling of a modular ISOP Full Bridge based converter with input filter," 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 2545-2552, 2016,
[CrossRef] [SCOPUS Times Cited 4]


[19] J. Millan, P. Godignon, X. Perpina, A. Perez-Tomas, and J. Rebollo, "A survey of wide bandgap power semiconductor devices," IEEE Trans. Power Electron., vol. 29, no. 5, pp. 2155-2163, 2014,
[CrossRef] [Web of Science Times Cited 1603] [SCOPUS Times Cited 1958]


[20] B. J. Baliga, "Fundamentals of Power Semiconductor Devices", 1st ed., ch 3.3, pp. 100-101, New York: Springer Science, 2008.

[21] J. E. Huber and J. W. Kolar, "Solid-State Transformers," IEEE Ind. Electron. Mag., vol. 10, pp. 19-28, 2016,
[CrossRef] [Web of Science Times Cited 284] [SCOPUS Times Cited 362]


[22] K. Hamada et al., "3.3 kV/1500 A Power Modules for the World's First All-SiC Traction Inverter," 2014 Int. Conf. on Solid State Devices. and Mater. (SSDM2014), pp. 14-18, 2014,
[CrossRef]


[23] K. Sato, H. Kato, and T. Fukushima, "Development of SiC Applied Traction System for Shinkansen High-speed Train," 2018 Int. Power Electron. Conf. (IPEC), pp. 3478-3483, 2018,
[CrossRef] [SCOPUS Times Cited 36]


[24] A. Q. Huang, L. Wang, Q. Tian, Q. Zhu, D. Chen, and W. Yu, "Medium voltage solid state transformers based on 15 kV SiC MOSFET and JBS diode," Industrial Electron. Conf. (IECON), pp. 6996-7003, 2016,
[CrossRef] [SCOPUS Times Cited 35]


[25] M. Lindahl, E. Velander, M. H. Johansson, A. Blomberg, and H. P. Nee, "Silicon carbide MOSFET traction inverter operated in the Stockholm metro system demonstrating customer values," 2018 IEEE Veh. Power Propuls. Conf. (VPPC), 2018,
[CrossRef] [SCOPUS Times Cited 16]


[26] E. Brunt et al., "27 kV, 20 Ampere-rated 4H-SiC n-IGBTs," Mater. Sci. Forum, vols. 821-823, pp. 847-850, 2015,
[CrossRef] [SCOPUS Times Cited 146]


[27] B. Hu et al., "A Survey on Recent Advances of Medium Voltage Silicon Carbide Power Devices," 2018 IEEE Energy Convers. Congr. Expo. (ECCE), pp. 2420-2427, 2018,
[CrossRef] [SCOPUS Times Cited 26]


[28] C. DIMarino et al., "Design of a novel, high-density, high-speed 10 kV SiC MOSFET module," 2017 IEEE Energy Convers. Congr. Expo. (ECCE), pp. 4003-4010, 2017,
[CrossRef] [SCOPUS Times Cited 25]


[29] J. Fabre, P. Ladoux, and M. Piton, "Characterization and Implementation of Dual-SiC MOSFET Modules for Future Use in Traction Converters," IEEE Trans. Power Electron., vol. 30, no. 8, pp. 4079-4090, 2015,
[CrossRef] [Web of Science Times Cited 112] [SCOPUS Times Cited 139]


[30] E. A. Jones, F. F. Wang, and D. Costinett, "Review of Commercial GaN Power Devices and GaN-Based Converter Design Challenges," IEEE J. Emerg. Sel. Top. Power Electron., vol. 4, no. 3, pp. 707-719, 2016,
[CrossRef] [Web of Science Times Cited 768] [SCOPUS Times Cited 905]






References Weight

Web of Science® Citations for all references: 3,420 TCR
SCOPUS® Citations for all references: 5,028 TCR

Web of Science® Average Citations per reference: 107 ACR
SCOPUS® Average Citations per reference: 157 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2024-09-18 00:26 in 181 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2024
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: 


DNS Made Easy