4/2021 - 3 |
Intelligent Charging Control of Power Aggregator for Electric Vehicles Using Optimal ControlALKAWAZ, A. N. , KANESAN, J. , MOHD KHAIRUDDIN, A. S. , CHOW, C. O. , SINGH, M. |
Extra paper information in |
Click to see author's profile in SCOPUS, IEEE Xplore, Web of Science |
Download PDF (1,684 KB) | Citation | Downloads: 981 | Views: 2,067 |
Author keywords
battery chargers, electric vehicle, energy consumption, lithium batteries, optimal control
References keywords
electric(18), vehicles(13), charging(11), control(9), vehicle(8), plug(8), optimal(8), smart(7), grid(7), energy(7)
Blue keywords are present in both the references section and the paper title.
About this article
Date of Publication: 2021-11-30
Volume 21, Issue 4, Year 2021, On page(s): 21 - 30
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2021.04003
Web of Science Accession Number: 000725107100003
SCOPUS ID: 85122254802
Abstract
Electric Vehicles (EVs) have been shown to be better for the environment since they emit lesser air pollutants compared to fuel-based vehicles. High penetration of EVs in the distribution network contributes to the increment of capital investment in smart grid technologies. This is because EVs' charging operation involves a considerably high level of electricity due to the size of EVs' battery charging period. Poor scheduling of EVs charging operation will lead to an increment in electricity consumption. This will then lead to overloading of distribution network, voltage quality degradation, power loss increment, and dispatch of uneconomical energy sources. Hence, coordinated, and smart charging schemes are vital in order to reduce charging costs. This paper proposes an optimized EV battery charging and discharging scheduling model using an ordinary differential equation (ODE) based on three charging scenarios. The daily charging and discharging schedule of EVs are optimized using optimal control. The result shows that the proposed optimized charging and discharging scheduling model reduces the charging cost up to approximately 50%. |
References | | | Cited By «-- Click to see who has cited this paper |
[1] F. Perera, "Pollution from fossil-fuel combustion is the leading environmental threat to global pediatric health and equity: solutions exist," International journal of environmental research and public health, vol. 15, no. 1, p. 16, 2018. [CrossRef] [Web of Science Times Cited 618] [SCOPUS Times Cited 787] [2] J. A. P. Lopes, F. J. Soares, and P. M. R. Almeida, "Integration of electric vehicles in the electric power system," Proceedings of the IEEE, vol. 99, no. 1, pp. 168-183, 2010 [CrossRef] [Web of Science Times Cited 948] [SCOPUS Times Cited 1248] [3] J. J. A. Saldanha, E. M. Dos Santos, A. P. C. De Mello, and D. P. Bernardon, "Control strategies for smart charging and discharging of plug-in electric vehicles," Smart Cities Technologies, vol. 1, 2016. [CrossRef] [Web of Science Times Cited 6] [4] G. Liu, L. Kang, Z. Luan, J. Qiu, and F. Zheng, "Charging station and power network planning for integrated electric vehicles (EVs)," Energies, vol. 12, no. 13, p. 2595, 2019. [CrossRef] [Web of Science Times Cited 33] [SCOPUS Times Cited 41] [5] C. Jin, J. Tang, and P. Ghosh, "Optimizing electric vehicle charging: A customer's perspective," IEEE Transactions on Vehicular Technology, vol. 62, no. 7, pp. 2919-2927, 2013. [CrossRef] [Web of Science Times Cited 187] [SCOPUS Times Cited 236] [6] Y. Cao, L. Huang, Y. Li, K. Jermsittiparsert, H. Ahmadi-Nezamabad, and S. Nojavan, "Optimal scheduling of electric vehicles aggregator under market price uncertainty using robust optimization technique," International Journal of Electrical Power & Energy Systems, vol. 117, p. 105628, 2020. [CrossRef] [Web of Science Times Cited 105] [SCOPUS Times Cited 160] [7] S. Tabatabaee, S. S. Mortazavi, and T. Niknam, "Stochastic scheduling of local distribution systems considering high penetration of plug-in electric vehicles and renewable energy sources," Energy, vol. 121, pp. 480-490, 2017. [CrossRef] [Web of Science Times Cited 85] [SCOPUS Times Cited 109] [8] M. Mazidi, A. Abbaspour, M. Fotuhi-Firuzabad, and M. Rastegar, "Optimal allocation of PHEV parking lots to minimize distribution system losses," in 2015 IEEE Eindhoven PowerTech, 2015: IEEE, pp. 1-6. [CrossRef] [SCOPUS Times Cited 11] [9] A. Dogan, S. Bahceci, F. Daldaban, and M. Alci, "Optimization of charge/discharge coordination to satisfy network requirements using heuristic algorithms in vehicle-to-grid concept," Advances in Electrical and Computer Engineering, vol. 18, no. 1, pp. 121-130, 2018. [CrossRef] [Full Text] [Web of Science Times Cited 10] [SCOPUS Times Cited 15] [10] B. Geng, J. K. Mills, and D. Sun, "Two-stage charging strategy for plug-in electric vehicles at the residential transformer level," IEEE Transactions on Smart Grid, vol. 4, no. 3, pp. 1442-1452, 2013. [CrossRef] [Web of Science Times Cited 68] [SCOPUS Times Cited 83] [11] P. Chanhom, S. Nuilers, and N. Hatti, "A new V2G control strategy for load factor improvement using smoothing technique," Advances in Electrical and Computer Engineering, vol. 17, no. 3, pp. 43-50, 2017. [CrossRef] [Full Text] [Web of Science Times Cited 2] [SCOPUS Times Cited 3] [12] W. Yao, J. Zhao, F. Wen, Y. Xue, and G. Ledwich, "A hierarchical decomposition approach for coordinated dispatch of plug-in electric vehicles," IEEE Transactions on Power Systems, vol. 28, no. 3, pp. 2768-2778, 2013. [CrossRef] [Web of Science Times Cited 171] [SCOPUS Times Cited 236] [13] W. Qi, Z. Xu, Z.-J. M. Shen, Z. Hu, and Y. Song, "Hierarchical coordinated control of plug-in electric vehicles charging in multifamily dwellings," IEEE Transactions on Smart Grid, vol. 5, no. 3, pp. 1465-1474, 2014. [CrossRef] [Web of Science Times Cited 80] [SCOPUS Times Cited 113] [14] R. Khatami, M. Parvania, and K. Oikonomou, "Continuous-time optimal charging control of plug-in electric vehicles," in 2018 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), 2018: IEEE, pp. 1-5. [CrossRef] [SCOPUS Times Cited 16] [15] H. M. Y. Naeem, A. I. Bhatti, Y. A. Butt, and Q. Ahmed, "Velocity Profile optimization of an Electric Vehicle (EV) with Battery Constraint Using Pontryagin's Minimum Principle (PMP)," in 2019 IEEE Conference on Control Technology and Applications (CCTA), 2019: IEEE, pp. 750-755. [CrossRef] [SCOPUS Times Cited 7] [16] Q. Li, J. Zou, and L. Li, "Optimum operation on electric vehicles considering battery degradation in V2G system," in 2017 36th Chinese Control Conference (CCC), 2017: IEEE, pp. 2835-2840. [CrossRef] [SCOPUS Times Cited 4] [17] S. Han, S. Han, and K. Sezaki, "Development of an optimal vehicle- to-grid aggregator for frequency regulation," IEEE Transactions on smart grid, vol. 1, no. 1, pp. 65-72, 2010. [CrossRef] [Web of Science Times Cited 758] [SCOPUS Times Cited 1009] [18] G. K. Venayagamoorthy, P. Mitra, K. Corzine, and C. Huston, "Real-time modeling of distributed plug-in vehicles for V2G transactions," in 2009 IEEE Energy Conversion Congress and Exposition, 2009: IEEE, pp. 3937-3941. [CrossRef] [SCOPUS Times Cited 70] [19] Z. Li, M. Chowdhury, P. Bhavsar, and Y. He, "Optimizing the performance of vehicle-to-grid (V2G) enabled battery electric vehicles through a smart charge scheduling model," International Journal of Automotive Technology, vol. 16, no. 5, pp. 827-837, 2015. [CrossRef] [Web of Science Times Cited 20] [SCOPUS Times Cited 43] [20] Z. Miljanic, V. Radulovic, and B. Lutovac, "Efficient placement of electric vehicles charging stations using integer linear programming," Advances in Electrical and Computer Engineering, vol. 18, no. 2, pp. 11-16, 2018. [CrossRef] [Full Text] [Web of Science Times Cited 14] [SCOPUS Times Cited 18] [21] Y. Parvini and A. Vahidi, "Optimal charging of ultracapacitors during regenerative braking," in 2012 IEEE International Electric Vehicle Conference, 2012: IEEE, pp. 1-6. [CrossRef] [SCOPUS Times Cited 26] [22] S. Bashash, S. J. Moura, J. C. Forman, and H. K. Fathy, "Plug-in hybrid electric vehicle charge pattern optimization for energy cost and battery longevity," Journal of power sources, vol. 196, no. 1, pp. 541-549, 2011. [CrossRef] [Web of Science Times Cited 274] [SCOPUS Times Cited 329] [23] B. Suthar, V. Ramadesigan, S. De, R. D. Braatz, and V. R. Subramanian, "Optimal charging profiles for mechanically constrained lithium-ion batteries," Physical Chemistry Chemical Physics, vol. 16, no. 1, pp. 277-287, 2014. [CrossRef] [Web of Science Times Cited 52] [SCOPUS Times Cited 56] [24] T. Lan, J. Hu, Q. Kang, C. Si, L. Wang, and Q. Wu, "Optimal control of an electric vehicle's charging schedule under electricity markets," Neural Computing and Applications, vol. 23, no. 7, pp. 1865-1872, 2013. [CrossRef] [Web of Science Times Cited 19] [SCOPUS Times Cited 25] [25] Y. Parvini and A. Vahidi, "Maximizing charging efficiency of lithium-ion and lead-acid batteries using optimal control theory," in 2015 American Control Conference (ACC), 2015: IEEE, pp. 317-322. [CrossRef] [SCOPUS Times Cited 49] [26] "High energy lithium-ion cell " in "VL 45 E cell" PACIFIC & CO., Saft Communication Department 2015. [Online] Available: Temporary on-line reference link removed - see the PDF document [27] Nord pool Spot Market area [Online] Available: Temporary on-line reference link removed - see the PDF document Web of Science® Citations for all references: 3,450 TCR SCOPUS® Citations for all references: 4,694 TCR Web of Science® Average Citations per reference: 123 ACR SCOPUS® Average Citations per reference: 168 ACR TCR = Total Citations for References / ACR = Average Citations per Reference We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more Citations for references updated on 2024-12-10 22:09 in 170 seconds. Note1: Web of Science® is a registered trademark of Clarivate Analytics. Note2: SCOPUS® is a registered trademark of Elsevier B.V. Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site. |
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania
All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.
Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.
Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.