Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.825
JCR 5-Year IF: 0.752
SCOPUS CiteScore: 2.5
Issues per year: 4
Current issue: May 2023
Next issue: Aug 2023
Avg review time: 77 days
Avg accept to publ: 48 days
APC: 300 EUR


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,139,941 unique visits
858,731 downloads
Since November 1, 2009



Robots online now
bingbot
PetalBot


SCOPUS CiteScore

SCOPUS CiteScore


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 23 (2023)
 
     »   Issue 2 / 2023
 
     »   Issue 1 / 2023
 
 
 Volume 22 (2022)
 
     »   Issue 4 / 2022
 
     »   Issue 3 / 2022
 
     »   Issue 2 / 2022
 
     »   Issue 1 / 2022
 
 
 Volume 21 (2021)
 
     »   Issue 4 / 2021
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
 Volume 20 (2020)
 
     »   Issue 4 / 2020
 
     »   Issue 3 / 2020
 
     »   Issue 2 / 2020
 
     »   Issue 1 / 2020
 
 
  View all issues  


FEATURED ARTICLE

A Wind Energy Prediction Scheme Combining Cauchy Variation and Reverse Learning Strategy, WU, X., SHEN, X., ZHANG, J., ZHANG, Y.
Issue 4/2021

AbstractPlus






LATEST NEWS

2022-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2021. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.825 (0.722 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.752.

2022-Jun-16
SCOPUS published the CiteScore for 2021, computed by using an improved methodology, counting the citations received in 2018-2021 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering in 2021 is 2.5, the same as for 2020 but better than all our previous results.

2021-Jun-30
Clarivate Analytics published the InCites Journal Citations Report for 2020. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.221 (1.053 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.961.

2021-Jun-06
SCOPUS published the CiteScore for 2020, computed by using an improved methodology, counting the citations received in 2017-2020 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering in 2020 is 2.5, better than all our previous results.

2021-Apr-15
Release of the v3 version of AECE Journal website. We moved to a new server and implemented the latest cryptographic protocols to assure better compatibility with the most recent browsers. Our website accepts now only TLS 1.2 and TLS 1.3 secure connections.

Read More »


    
 

  1/2022 - 8

Performance Comparison of Different OpenCL Implementations of LBM Simulation on Commodity Computer Hardware

TEKIC, J. See more information about TEKIC, J. on SCOPUS See more information about TEKIC, J. on IEEExplore See more information about TEKIC, J. on Web of Science, TEKIC, P. See more information about  TEKIC, P. on SCOPUS See more information about  TEKIC, P. on SCOPUS See more information about TEKIC, P. on Web of Science, RACKOVIC, M. See more information about RACKOVIC, M. on SCOPUS See more information about RACKOVIC, M. on SCOPUS See more information about RACKOVIC, M. on Web of Science
 
View the paper record and citations in View the paper record and citations in Google Scholar
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,653 KB) | Citation | Downloads: 420 | Views: 536

Author keywords
Lattice Boltzmann methods, multicore processing, scientific computing, parallel programming, parallel algorithms

References keywords
boltzmann(25), lattice(24), method(13), flow(9), multi(8), flows(7), opencl(6), implementation(6), fluid(6), cavity(6)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2022-02-28
Volume 22, Issue 1, Year 2022, On page(s): 69 - 76
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2022.01008
Web of Science Accession Number: 000762769600007
SCOPUS ID: 85126816356

Abstract
Quick view
Full text preview
Parallel programming is increasingly used to improve the performance of solving numerical methods used for scientific purposes. Numerical methods in the field of fluid dynamics require the calculation of a large number of operations per second. One of the methods that is easily parallelized and often used is the Lattice Boltzmann method (LBM). Today, it is possible to perform simulations of numerical methods not only on high performance computers (HPC) but also on commodity computers. In this paper is presented how to accelerate LBM implementation on commodity computers using characteristics of OpenCL specification. Simulation is executed simultaneously on multiple heterogeneous devices. Four different approaches for several commodity computer configurations are presented. Obtained results are compared for different types of commodity computers and advantages and disadvantages are discussed. In this paper it presented which LBM OpenCL code implementation, among four different presented, shows best simulation performance and should be used when solving similar CFD problems.


References | Cited By  «-- Click to see who has cited this paper

[1] P. L. Alvarez, S. Yamagiwa, "Invitation to OpenCL (Published Conference Proceedings style)," in Proc. Conference: Second International Conference on Networking and Computing, ICNC 2011, Osaka, Japan, November 30 - December 2, 2011, pp. 8-16.
[CrossRef] [SCOPUS Times Cited 2]


[2] W. S. R. M. Weiping Shi, "Finite-difference-based Lattice Boltzmann method for inviscid compressible flows," Numerical Heat Transfer, Part B: Fundamentals, vol. 40, pp. 1-21, no. 1, 2001.
[CrossRef] [Web of Science Times Cited 63] [SCOPUS Times Cited 65]


[3] R. Mei, W. Shyy, D. Yu, L.-S. Luo, "Lattice Boltzmann method for 3-D flows with curved boundary," Journal of Computational Physics, vol. 161, pp. 680-699, no. 2, 2000.
[CrossRef] [Web of Science Times Cited 251] [SCOPUS Times Cited 293]


[4] Z. Guo, T. S. Zhao, "A Lattice Boltzmann model for convective heat transfer in porous media," Numerical Heat Transfer, Part B: Fundamentals, vol. 47, pp. 157-177, no. 2, 2005.
[CrossRef] [Web of Science Times Cited 226] [SCOPUS Times Cited 257]


[5] P. M. Tekic, J. B. Radenovic, N. Lj. Lukic., S. S. Popovic, "Lattice Boltzmann simulation of two-sided lid-driven flow in a staggered cavity," Int. J. Comput. Fluid Dyn., vol. 24, pp. 383-390, no. 9, 2010.
[CrossRef] [Web of Science Times Cited 10] [SCOPUS Times Cited 16]


[6] N. Lukic,, P. Tekic, J. Radjenovic, I. Sijacki, "Lattice Boltzmann simulation of two-sided lid-driven flow in deep cavities," Acta Periodica Technologica, pp. 157-168, 2015.
[CrossRef] [SCOPUS Times Cited 1]


[7] S. Tomov, M. McGuigan, R. Bennett, G. Smith, J. Spiletic, "Benchmarking and implementation of probability-based simulations on programmable graphics cards," Computers & Graphics, vol. 29, pp. 71-80, no. 1, 2005.
[CrossRef] [Web of Science Times Cited 30] [SCOPUS Times Cited 43]


[8] W. Li, X. Wei, A. Kaufman, "Implementing lattice Boltzmann computation on graphics hardware," The Visual Computer, vol. 19, pp. 444-456, no. 7, 2003.
[CrossRef] [Web of Science Times Cited 107] [SCOPUS Times Cited 147]


[9] D. Vidal, R. Roy, F. Bertrand, "A parallel workload balanced and memory efficient Lattice-Boltzmann algorithm with single unit BGK relaxation time for laminar Newtonian flows," Computers & Fluids, vol. 39, pp. 1411-1423, no. 8, 2010.
[CrossRef] [Web of Science Times Cited 107] [SCOPUS Times Cited 147]


[10] K. Mattila, J. Hyvaluoma, J. Timonen, T. Rossi, "Comparison of implementations of the Lattice-Boltzmann method," Computers & Mathematics with Applications, vol. 55, pp. 1514-1524, no. 7, 2008.
[CrossRef] [Web of Science Times Cited 43] [SCOPUS Times Cited 56]


[11] G. K. Batchelor, "On steady laminar flow with closed streamlines at large Reynolds number," Journal of Fluid Mechanics, vol 1, pp. 177-190 , 1956.
[CrossRef] [Web of Science Times Cited 534] [SCOPUS Times Cited 483]


[12] F. Pan, A, Acrivos, "Steady flows in rectangular cavitie," Journal of Fluid Mechanics," vol. 28, pp. 643-655, 1967
[CrossRef] [Web of Science Times Cited 376] [SCOPUS Times Cited 391]


[13] A. S. Benjamin, V. E. Denny, "On the convergence of numerical solutions for 2-D flows in a cavity at large Re," Journal of Computational Physics, vol. 33, pp. 340-358, 1979.
[CrossRef] [Web of Science Times Cited 82] [SCOPUS Times Cited 94]


[14] P. N. Shankar, M. D. Deshpande, "Fluid Mechanics in the Driven Cavity," Annual Review of Fluid Mechanics, vol. 32, no.1 , pp. 93-136, 2000.
[CrossRef] [Web of Science Times Cited 584] [SCOPUS Times Cited 668]


[15] C.-H. Bruneau, M. Saad, "The 2D lid-driven cavity problem revisited. Computers & Fluids," vol. 35, no. 3, pp. 326-348, 2006.
[CrossRef] [Web of Science Times Cited 313] [SCOPUS Times Cited 370]


[16] J. Tolke, "Implementation of a Lattice Boltzmann kernel using the Compute Unified Device Architecture developed by NVIDIA," Computing and Visualization in Science, vol. 13, no. 29, 2010.
[CrossRef] [SCOPUS Times Cited 172]


[17] C. Obrecht, F. Kuznik, B. Tourancheau, J.-J. Roux, "Multi-GPU implementation of the Lattice Boltzmann method," Computers & Mathematics with Applications, vol. 65, pp. 252-261, no. 2, 2013.
[CrossRef] [Web of Science Times Cited 79] [SCOPUS Times Cited 90]


[18] H.-W. Chang, P.-Y. Hong, L.-S. Lin, C.-A. Lin, "Simulations of three-dimensional cavity flows with multi relaxation time Lattice Boltzmann method and graphic processing units," Procedia Engineering, vol. 61, pp. 94-99, no. 2013.
[CrossRef] [SCOPUS Times Cited 5]


[19] H.-W. Chang, P.-Y. Hong, L.-S. Lin, C.-A. Lin, "Simulations of flow instability in three dimensional deep cavities with multi relaxation time Lattice Boltzmann method on graphic processing units," Computers & Fluids, vol. 88, pp. 866-871, no. 2013.
[CrossRef] [Web of Science Times Cited 20] [SCOPUS Times Cited 21]


[20] C. Huang, B. Shi, N. He, Z. Chai, "Implementation of Multi-GPU based Lattice Boltzmann method for flow through porous media," Advances in Applied Mathematics and Mechanics, vol. 7, pp. 1-12, no. 1, 2015.
[CrossRef] [Web of Science Times Cited 32] [SCOPUS Times Cited 23]


[21] P.-Y. Hong, L.-M. Huang, L.-S. Lin, C.-A. Lin, "Scalable multi-relaxation-time Lattice Boltzmann simulations on multi-GPU cluster," Computers & Fluids, vol. 110, pp. 1-8, no. 2015.
[CrossRef] [Web of Science Times Cited 31] [SCOPUS Times Cited 34]


[22] W. Xian, A. Takayuki, "Multi-GPU performance of incompressible flow computation by Lattice Boltzmann method on GPU cluster," Parallel Computing, vol. 37, pp. 521-535, no. 9, 2011.
[CrossRef] [Web of Science Times Cited 107] [SCOPUS Times Cited 141]


[23] B. Massimo, F. Massimiliano, M. Simone, S. Sauro, K. Efthimios, "A flexible high-performance Lattice Boltzmann GPU code for the simulations of fluid flows in complex geometries," Concurrency and Computation: Practice and Experience, vol. 22, pp. 1-14, no. 1, 2010.
[CrossRef]


[24] P. M. Tekic, J. B. Radjenovic, M. Rackovic, "Implementation of the Lattice Boltzmann Method on heterogeneous hardware and platforms using OpenCL, " Advances in Electrical and Computer Engineering, vol. 12, no. 1, pp. 51-56, 2012.
[CrossRef] [Full Text] [Web of Science Times Cited 5] [SCOPUS Times Cited 6]


[25] E. Calore, S.F. Schifano, R. Tripiccione, "A Portable OpenCL Lattice Boltzmann code for multi- and many-core processor architectures," Procedia Computer Science, vol. 29, pp. 40-49, 2014.
[CrossRef] [Web of Science Times Cited 12] [SCOPUS Times Cited 13]


[26] S. McIntosh-Smith, D. Curran, "Evaluation of a performance portable Lattice Boltzmann code using OpenCL," in Proc. Conference: International Workshop on OpenCL 2013 & 2014. Association for Computing Machinery, New York, NY, USA, 2014.
[CrossRef] [SCOPUS Times Cited 4]


[27] J. B. Tekic, P. M. Tekic, M. Rackovic, "Lattice Boltzmann method implementation on multiple devices using OpenCL," Advances in Electrical and Computer Engineering, vol. 3, pp. 3-8, 2018.
[CrossRef] [Full Text] [Web of Science Times Cited 2] [SCOPUS Times Cited 2]


[28] D. V. Patil, K. N. Lakshmisha, B. Rogg, "Lattice Boltzmann simulation of lid-driven flow in deep cavities," Computers & Fluids, vol. 35, pp. 1116-1125, no. 10, 2006.
[CrossRef] [Web of Science Times Cited 62] [SCOPUS Times Cited 73]


[29] S. Hou, Q. Zou,S. Chen, G. Doolen, A. C. Cogley, "Simulation of cavity flow by the Lattice Boltzmann method," Journal of Computational Physics, vol. 118, pp. 329-347, no. 2, 1995.
[CrossRef] [Web of Science Times Cited 522] [SCOPUS Times Cited 615]


[30] P. L. Bhatnagar, E. P. Gross, M. Krook, "A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems," Physical Review, vol. 94, pp. 511-525, no. 3, 1954.
[CrossRef] [Web of Science Times Cited 6197] [SCOPUS Times Cited 6547]


[31] X, He, L. Luo, "Theory of the Lattice Boltzmann method: From the Boltzmann equation to the Lattice Boltzmann equation," Physical Review, vol. 56, pp. 6811-6817, no. 6, 1997.
[CrossRef] [Web of Science Times Cited 1259] [SCOPUS Times Cited 1434]


[32] U. Ghia, K. N. Ghia, C. T. Shin, "High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method," Journal of Computational Physics, vol. 48, pp. 387-411, 1982.
[CrossRef] [Web of Science Times Cited 2886] [SCOPUS Times Cited 3438]




References Weight

Web of Science® Citations for all references: 13,940 TCR
SCOPUS® Citations for all references: 15,651 TCR

Web of Science® Average Citations per reference: 422 ACR
SCOPUS® Average Citations per reference: 474 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2023-05-29 01:24 in 184 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2023
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: