Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.700
JCR 5-Year IF: 0.700
SCOPUS CiteScore: 1.8
Issues per year: 4
Current issue: Aug 2024
Next issue: Nov 2024
Avg review time: 54 days
Avg accept to publ: 60 days
APC: 300 EUR


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,826,395 unique visits
1,119,572 downloads
Since November 1, 2009



Robots online now
Amazonbot
Googlebot
bingbot
MJ12bot


SCOPUS CiteScore

SCOPUS CiteScore


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 24 (2024)
 
     »   Issue 3 / 2024
 
     »   Issue 2 / 2024
 
     »   Issue 1 / 2024
 
 
 Volume 23 (2023)
 
     »   Issue 4 / 2023
 
     »   Issue 3 / 2023
 
     »   Issue 2 / 2023
 
     »   Issue 1 / 2023
 
 
 Volume 22 (2022)
 
     »   Issue 4 / 2022
 
     »   Issue 3 / 2022
 
     »   Issue 2 / 2022
 
     »   Issue 1 / 2022
 
 
 Volume 21 (2021)
 
     »   Issue 4 / 2021
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
  View all issues  


FEATURED ARTICLE

Application of the Voltage Control Technique and MPPT of Stand-alone PV System with Storage, HIVZIEFENDIC, J., VUIC, L., LALE, S., SARIC, M.
Issue 1/2022

AbstractPlus






LATEST NEWS

2024-Jun-20
Clarivate Analytics published the InCites Journal Citations Report for 2023. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.700 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.600.

2023-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2022. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.800 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 1.000.

2023-Jun-05
SCOPUS published the CiteScore for 2022, computed by using an improved methodology, counting the citations received in 2019-2022 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2022 is 2.0. For "General Computer Science" we rank #134/233 and for "Electrical and Electronic Engineering" we rank #478/738.

2022-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2021. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.825 (0.722 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.752.

2022-Jun-16
SCOPUS published the CiteScore for 2021, computed by using an improved methodology, counting the citations received in 2018-2021 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2021 is 2.5, the same as for 2020 but better than all our previous results.

Read More »


    
 

  3/2022 - 10
View TOC | « Previous Article | Next Article »

Performance of Interpolated Histogram of Oriented Gradients on the Feature Calculation of SIFT

OZTURK, A. See more information about OZTURK, A. on SCOPUS See more information about OZTURK, A. on IEEExplore See more information about OZTURK, A. on Web of Science, CAYIROGLU, I. See more information about CAYIROGLU, I. on SCOPUS See more information about CAYIROGLU, I. on SCOPUS See more information about CAYIROGLU, I. on Web of Science
 
View the paper record and citations in View the paper record and citations in Google Scholar
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,794 KB) | Citation | Downloads: 976 | Views: 1,343

Author keywords
image processing, computer vision, image analysis, feature extraction, object detection

References keywords
vision(9), image(9), scale(8), recognition(7), pattern(7), invariant(6), processing(5), local(5), feature(5), space(4)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2022-08-31
Volume 22, Issue 3, Year 2022, On page(s): 87 - 94
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2022.03010
Web of Science Accession Number: 000861021000010
SCOPUS ID: 85137667974

Abstract
Quick view
Full text preview
Scale Invariant Feature Transform (SIFT) is the most dominant and robust object detection algorithm. It utilizes the Histogram of Oriented Gradients (HOG) method for feature computation. HOG is applied with trilinear interpolation to gain performance improvement. This paper examines the effect of interpolation on the performance of SIFT on both OXFORD and HPatches datasets. The various algorithms of interpolation for HOG, and the spatial binning process algorithm, are presented here. The performance is evaluated with Intersection Over Union, Correct Match Percentage, as well as the execution time of the algorithms. Moreover, we used the multiplication of the Intersection Over Union and Correct Match Percentage to take advantage of both metrics. It was observed that the interpolation did not significantly affect the performance of the SIFT.


References | Cited By  «-- Click to see who has cited this paper

[1] D. G. Lowe, "Object recognition from local scale-invariant features," in Proceedings of the Seventh IEEE International Conference on Computer Vision, Sep. 1999, vol. 2, pp. 1150-1157 vol. 2.
[CrossRef]


[2] D. G. Lowe, "Distinctive image features from scale-invariant keypoints," International Journal of Computer Vision, vol. 60, no. 2, pp. 91-110, Nov. 2004.
[CrossRef] [Web of Science Times Cited 35153] [SCOPUS Times Cited 48673]


[3] T. Tuytelaars, K. Mikolajczyk, Local invariant feature detectors: a survey. Now Publishers Inc, 2008,
[CrossRef] [Web of Science Times Cited 924] [SCOPUS Times Cited 1233]


[4] J. Babaud, A. P. Witkin, M. Baudin, R. O. Duda, "Uniqueness of the Gaussian kernel for scale-space filtering," IEEE transactions on pattern analysis and machine intelligence, no. 1, pp. 26-33, 1986.
[CrossRef] [Web of Science Times Cited 465] [SCOPUS Times Cited 633]


[5] T. Lindeberg, "On the Axiomatic Foundations of Linear Scale-space," in Gaussian Scale-Space Theory, J. Sporring, M. Nielsen, L. Florack, and P. Johansen, Eds. Dordrecht: Springer Netherlands, 1997, pp. 75-97.
[CrossRef]


[6] P. Getreuer, "Linear methods for image interpolation," Image Processing On Line, vol. 1, pp. 238-259, Sep. 2011.
[CrossRef]


[7] I. R. Otero, M. Delbracio, "Computing an exact gaussian scale-space," Image Processing On Line, vol. 6, pp. 8-26, Feb. 2016.
[CrossRef] [Web of Science Times Cited 8]


[8] K. Mikolajczyk, C. Schmid, "Scale & Affine invariant interest point detectors," International Journal of Computer Vision, vol. 60, no. 1, pp. 63-86, Oct. 2004.
[CrossRef] [Web of Science Times Cited 2432] [SCOPUS Times Cited 3396]


[9] I. R. Otero, M. Delbracio, "Anatomy of the SIFT method," Image Processing On Line, vol. 4, pp. 370-396, Dec. 2014.
[CrossRef] [Web of Science Times Cited 45]


[10] G. S. Chirikjian, "Gaussian distributions and the heat equation," in Stochastic Models, Information Theory, and Lie Groups, Volume 1: Classical Results and Geometric Methods, G. S. Chirikjian, Ed. Boston: Birkhauser, 2009, pp. 31-61.
[CrossRef] [SCOPUS Times Cited 6]


[11] H. Bay, A. Ess, T. Tuytelaars, L. Van Gool, "Speeded-Up Robust Features (SURF)," Computer Vision and Image Understanding, vol. 110, no. 3, pp. 346-359, Jun. 2008,
[CrossRef] [Web of Science Times Cited 7599] [SCOPUS Times Cited 12382]


[12] E. Oyallon, J. Rabin, "An analysis of the SURF method," Image Processing On Line, vol. 5, pp. 176-218, Jul. 2015.
[CrossRef] [Web of Science Times Cited 46]


[13] P. Porwik, A. Lisowska, "The Haar-wavelet transform in digital image processing: its status and achievements," Machine graphics and vision, vol. 13, no. 1/2, pp. 79-98, 2004

[14] P. Azad, T. Asfour, R. Dillmann, "Combining Harris interest points and the SIFT descriptor for fast scale-invariant object recognition," in 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, Oct. 2009, pp. 4275-4280.
[CrossRef] [Web of Science Times Cited 77] [SCOPUS Times Cited 132]


[15] P. Loncomilla, J. Ruiz-del-Solar, L. Martinez, "Object recognition using local invariant features for robotic applications: A survey," Pattern Recognition, vol. 60, pp. 499-514, Dec. 2016.
[CrossRef] [Web of Science Times Cited 72] [SCOPUS Times Cited 94]


[16] V. Balntas, K. Lenc, A. Vedaldi, K. Mikolajczyk, "HPatches: A benchmark and evaluation of handcrafted and learned local descriptors," in 2017 Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5173-5182.
[CrossRef]


[17] J. Birk, R. Kelley, N. Chen, L. Wilson, "Image feature extraction using diameter-limited gradient direction histograms," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-1, no. 2, pp. 228-235, Apr. 1979.
[CrossRef] [Web of Science Times Cited 9] [SCOPUS Times Cited 15]


[18] N. Dalal, B. Triggs, "Histograms of oriented gradients for human detection," in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), Jun. 2005, vol. 1, pp. 886-893 vol. 1.
[CrossRef] [Web of Science Times Cited 23031] [SCOPUS Times Cited 29648]


[19] N. Dalal, "Finding people in images and videos," PhD Thesis, Institut National Polytechnique de Grenoble - INPG, 2006. Accessed: May 17, 2022. [Online]. Available: https://tel.archives-ouvertes.fr/tel-00390303

[20] L. A. I. Chi Qin, S. S. Teoh, "An efficient method of HOG feature extraction using selective histogram bin and PCA feature reduction," Advances in Electrical and Computer Engineering, vol. 16, no. 4, pp. 101-108, 2016.
[CrossRef] [Full Text] [Web of Science Times Cited 8] [SCOPUS Times Cited 15]


[21] C.-C. Raxle Wang, J.-J. J. Lien, "AdaBoost learning for human detection based on histograms of oriented gradients," in Computer Vision - ACCV 2007, Berlin, Heidelberg, 2007, pp. 885-895.
[CrossRef]


[22] S. Kim, K. Cho, "Fast calculation of histogram of oriented gradient feature by removing redundancy in overlapping block," Journal of Information Science and Engineering, vol. 30, no. 6, pp. 1719-1731, Nov. 2014.
[CrossRef]


[23] K. Mikolajczyk, C. Schmid, "A performance evaluation of local descriptors," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 10, pp. 1615-1630, Oct. 2005.
[CrossRef] [Web of Science Times Cited 4397] [SCOPUS Times Cited 5979]


[24] H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I. Reid, S. Savarese, "Generalized intersection over union: A metric and a loss for bounding box regression," in 2019 Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658-666.
[CrossRef]


[25] "Clipper - an open-source freeware polygon clipping library," http://www.angusj.com/delphi/clipper.php (accessed May 17, 2022)

[26] "OXFORD TEST DATA," https://www.robots.ox.ac.uk/~vgg/research/affine/index.html

[27] M. Muja and D. G. Lowe, "Fast approximate nearest neighbors with automatic algorithm configuration," VISAPP (1), vol. 2, no. 331-340, p. 2, 2009.
[CrossRef]




References Weight

Web of Science® Citations for all references: 74,266 TCR
SCOPUS® Citations for all references: 102,206 TCR

Web of Science® Average Citations per reference: 2,652 ACR
SCOPUS® Average Citations per reference: 3,650 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2024-10-07 13:05 in 155 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2024
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: 


DNS Made Easy