Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.800
JCR 5-Year IF: 1.000
SCOPUS CiteScore: 2.0
Issues per year: 4
Current issue: Feb 2024
Next issue: May 2024
Avg review time: 76 days
Avg accept to publ: 48 days
APC: 300 EUR


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,541,855 unique visits
1,010,525 downloads
Since November 1, 2009



Robots online now
bingbot
Googlebot


SCOPUS CiteScore

SCOPUS CiteScore


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 24 (2024)
 
     »   Issue 1 / 2024
 
 
 Volume 23 (2023)
 
     »   Issue 4 / 2023
 
     »   Issue 3 / 2023
 
     »   Issue 2 / 2023
 
     »   Issue 1 / 2023
 
 
 Volume 22 (2022)
 
     »   Issue 4 / 2022
 
     »   Issue 3 / 2022
 
     »   Issue 2 / 2022
 
     »   Issue 1 / 2022
 
 
 Volume 21 (2021)
 
     »   Issue 4 / 2021
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
  View all issues  


FEATURED ARTICLE

Application of the Voltage Control Technique and MPPT of Stand-alone PV System with Storage, HIVZIEFENDIC, J., VUIC, L., LALE, S., SARIC, M.
Issue 1/2022

AbstractPlus


SAMPLE ARTICLES

Continuous Student Knowledge Tracing Using SVD and Concept Maps, TEODORESCU, O. M., POPESCU, P. S., MOCANU, L. M., MIHAESCU, M. C.
Issue 1/2021

AbstractPlus

Analysis of the Hybrid PSO-InC MPPT for Different Partial Shading Conditions, LEOPOLDINO, A. L. M., FREITAS, C. M., MONTEIRO, L. F. C.
Issue 2/2022

AbstractPlus

Deep Learning Based DNS Tunneling Detection and Blocking System, ALTUNCU, M. A., GULAGIZ, F. K., OZCAN, H., BAYIR, O. F., GEZGIN, A., NIYAZOV, A., CAVUSLU, M. A., SAHIN, S.
Issue 3/2021

AbstractPlus

Breakdown Probability, Reliability and Streamer Dynamics in Transformer Oil based Hybrid Nanofluid, BHATT, M., BHATT, P.
Issue 2/2023

AbstractPlus

Heuristics EMS for HESS of Electric Vehicle to Extended Battery Operation Using Rate Limiter, RANJAN, A., BODKHE, S. B., GOYAL, G. N., AWARE, M. V.
Issue 4/2022

AbstractPlus

Multidisciplinary Fusion Perspective Analysis Method for False Information Recognition, FAN, W., WANG, Y.
Issue 1/2024

AbstractPlus




LATEST NEWS

2023-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2022. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.800 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 1.000.

2023-Jun-05
SCOPUS published the CiteScore for 2022, computed by using an improved methodology, counting the citations received in 2019-2022 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2022 is 2.0. For "General Computer Science" we rank #134/233 and for "Electrical and Electronic Engineering" we rank #478/738.

2022-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2021. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.825 (0.722 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.752.

2022-Jun-16
SCOPUS published the CiteScore for 2021, computed by using an improved methodology, counting the citations received in 2018-2021 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2021 is 2.5, the same as for 2020 but better than all our previous results.

2021-Jun-30
Clarivate Analytics published the InCites Journal Citations Report for 2020. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.221 (1.053 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.961.

Read More »


    
 

  3/2022 - 4

Different Concepts of Grid-Connected Microgrids with a PV System, Battery Energy Storage, Feed-in Tariff, and Load Management Using Fuzzy Logic

ZEC, L. See more information about ZEC, L. on SCOPUS See more information about ZEC, L. on IEEExplore See more information about ZEC, L. on Web of Science, MIKULOVIC, J. See more information about MIKULOVIC, J. on SCOPUS See more information about MIKULOVIC, J. on SCOPUS See more information about MIKULOVIC, J. on Web of Science
 
View the paper record and citations in View the paper record and citations in Google Scholar
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,657 KB) | Citation | Downloads: 614 | Views: 919

Author keywords
batteries, fuzzy logic, load management, microgrids, photovoltaic systems

References keywords
energy(32), management(18), power(12), fuzzy(12), system(10), microgrid(10), grid(10), systems(9), control(9), renewable(8)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2022-08-31
Volume 22, Issue 3, Year 2022, On page(s): 33 - 42
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2022.03004
Web of Science Accession Number: 000861021000004
SCOPUS ID: 85137727458

Abstract
Quick view
Full text preview
This paper presents different variants of smart grid-connected microgrids consisting of a photovoltaic (PV) system and batteries. Based on ten-minute data on the consumption of the distribution system, the estimation of the consumption diagram of one household was performed, as well as the determination of its unmanageable and manageable part. The fuzzy logic controller and algorithm for energy flow management were applied to manage the consumption of one household. The proposed load management provides a continuous power supply to a consumer from his PV system, batteries, and distribution grid, enabling the energy exchange with the grid and achieving financial gain. The input data for the fuzzy logic controller are the difference between the PV system power production and the household power consumption, the variation of the price of electricity on the market to its average value, and the state of charge of the battery. The output data from the fuzzy logic controller are the probabilities of engaging home appliances. The presented analysis was done for a period of one year for the city of Belgrade.


References | Cited By  «-- Click to see who has cited this paper

[1] A. Hirsh, Y. Parag, J. Guerrero, "Microgrids: A review of technologies, key drivers, and outstanding issues," Renewable and Sustainable Energy Reviews, vol. 90, pp. 402-411, 2018.
[CrossRef] [Web of Science Times Cited 745] [SCOPUS Times Cited 971]


[2] Y. Zahraoui, I. Alhamrouni, S. Mekhilef, M. R. Basir Khan, M. Seyedmahmoudian, A. Stojcevski, B. Horan, "Energy management system in microgrids: A comprehensive review," Sustainability, vol. 13, no. 19, pp. 10492, 2021.
[CrossRef] [Web of Science Times Cited 40] [SCOPUS Times Cited 69]


[3] S. Jamal, N. M. L. Tan, J. Pasupuleti, "A review of energy management and power management systems for microgrid and nanogrid applications," Sustainability, vol. 13, no. 18, pp. 10331, 2021.
[CrossRef] [Web of Science Times Cited 17] [SCOPUS Times Cited 25]


[4] M. F. Zia, E. Elbouchikhib, M. Benbouzid, "Microgrids energy management systems: A critical review on methods, solutions, and prospects," Applied Energy, vol. 222, pp. 1033-1055, 2018.
[CrossRef] [Web of Science Times Cited 526] [SCOPUS Times Cited 683]


[5] B. Jyoti Saharia, H. Brahma, N. Sarmah, "A review of algorithms for control and optimization for energy management of hybrid renewable energy systems," Journal of Renewable and Sustainable Energy, vol. 10, no. 5, pp. 053502, 2018.
[CrossRef] [Web of Science Times Cited 34] [SCOPUS Times Cited 40]


[6] A. Borni, T. Abdelkrim, L. Zaghba, A. Bouchakour, A. Lakhdari, L. Zarour, "Fuzzy logic, PSO based fuzzy logic algorithm and current controls comparative for grid-connected hybrid system," AIP Conference Proceedings, vol. 1814, no. 1, pp. 020006, 2017.
[CrossRef] [Web of Science Times Cited 11] [SCOPUS Times Cited 14]


[7] K. S. Ei-Bidairi, H. D. Nguyen, S. D. G. Jayasinghe, T. S. Mahmoud, "Multiobjective intelligent energy management optimization for grid-connected microgrids," 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), IEEE, pp 1-6, 2018.
[CrossRef] [SCOPUS Times Cited 39]


[8] A. J. Aristizabal, D. H. Ospina, M. Castañeda, S. Zapata, E. Banguero, "Fuzzy logic energy management for a microgrid with storage battery," International Journal of Ambient Energy, vol. 41, no. 10, pp. 1183-1191, 2020.
[CrossRef] [Web of Science Times Cited 1] [SCOPUS Times Cited 4]


[9] S. Das, A. K. Akella, "Power flow control of PV-wind-battery hybrid renewable energy systems for stand-alone application," International Journal of Renewable Energy Research, vol. 8, no. 1, pp. 36-43, 2018.
[CrossRef]


[10] D. Arcos-Aviles, J. Pascual, L. Marroyo, P. Sanchis, F. Guinjoan, "Fuzzy logic-based energy management system design for residential grid-connected microgrids," IEEE Transactions on Smart Grid, vol. 9, no. 2, pp. 530-543, 2018.
[CrossRef] [Web of Science Times Cited 196] [SCOPUS Times Cited 237]


[11] U. Datta, J. Shi, A. Kalam, "Primary frequency control of a microgrid with integrated dynamic sectional droop and fuzzy based pitch angle control," International Journal of Electrical Power & Energy Systems, vol. 111, pp. 248-259, 2019.
[CrossRef] [Web of Science Times Cited 25] [SCOPUS Times Cited 31]


[12] G. Saveen, P. Prudhvi Raju, D. V. Manikanta, M. Satya Praveen, "Design and implementation of energy management system with fuzzy control for multiple microgrid," 2018 2nd International Conference on Inventive Systems and Control (ICISC), IEEE, pp. 1239-1244, 2018.
[CrossRef] [SCOPUS Times Cited 15]


[13] P. Tenti, H. K. Morales Paredes, P. Mattavelli, "Conservative power theory, a framework to approach control and accountability issues in smart microgrids," IEEE Transactions on Power Electronics, vol. 26, no. 3, pp. 664-673, 2011.
[CrossRef] [Web of Science Times Cited 177] [SCOPUS Times Cited 224]


[14] Y. Zhou, "The optimal home energy management strategy in smart grid," Journal of Renewable and Sustainable Energy, vol. 8, no. 4, pp. 045101, 2016.
[CrossRef] [Web of Science Times Cited 7] [SCOPUS Times Cited 12]


[15] E. D. Santis, A. Rizzi, A. Sadeghian, "Hierarchical genetic optimization of a fuzzy logic system for energy flows management in microgrids," Applied Soft Computing, vol. 60, pp. 135-149, 2017.
[CrossRef] [Web of Science Times Cited 55] [SCOPUS Times Cited 69]


[16] J. P. Fossati, A. Galarza, A. Martin-Villate, J. M. Echeverria, L. Fontan, "Optimal scheduling of a microgrid with a fuzzy logic controlled storage system," International Journal of Electrical Power & Energy Systems, vol.68, pp. 61-70, 2015.
[CrossRef] [Web of Science Times Cited 68] [SCOPUS Times Cited 75]


[17] A. Chaouachi, R. M. Kamel, R. Andoulsi, K. Nagasaka, "Multiobjective intelligent energy management for a microgrid," IEEE Transactions on Industrial Electronics, vol. 60, no. 4, pp. 1688-1699, 2013.
[CrossRef] [Web of Science Times Cited 462] [SCOPUS Times Cited 556]


[18] D. Arcos-Avilesa, J. Pascualb, F. Guinjoanc, L. Marroyob, P. Sanchisb, M. P. Mariettac, "Low complexity energy management strategy for grid profile smoothing of a residential grid-connected microgrid using generation and demand forecasting," Applied Energy, vol. 205, pp. 69-84, 2017.
[CrossRef] [Web of Science Times Cited 92] [SCOPUS Times Cited 108]


[19] T. T. Teo, T. Logenthiran, W. L. Woo, K. Abidi, T. John, N. S. Wade, D. M. Greenwood, C. Patsios, P. C. Taylor, "Optimization of fuzzy energy-management system for grid-connected microgrid using NSGA-II," IEEE Transactions on Cybernetics, vol. 51, no. 11, pp. 5375 -5386, 2021.
[CrossRef] [Web of Science Times Cited 48] [SCOPUS Times Cited 53]


[20] S. Leonori, E. De Santis, A. Rizzi, F. M. F. Mascioli, "Optimization of a microgrid energy management system based on a Fuzzy Logic Controller," IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society, IEEE, pp 6615-6620, 2016.
[CrossRef] [SCOPUS Times Cited 36]


[21] S. Chakraborty, T. Ito, T. Senjyu, A. Yousuf Saber, "Intelligent economic operation of smart-grid facilitating fuzzy advanced quantum evolutionary method," IEEE Transactions on Sustainable Energy, vol. 4, no. 4, pp. 905-916, 2013.
[CrossRef] [Web of Science Times Cited 41] [SCOPUS Times Cited 47]


[22] M. Khalida, R. P. Aguilerab, A. V. Savkinc, V. G. Agelidisd, "On maximizing profit of wind-battery supported power station based on wind power and energy price forecasting," Applied Energy, vol. 211, pp. 764-773, 2018.
[CrossRef] [Web of Science Times Cited 62] [SCOPUS Times Cited 72]


[23] L. Zec, J. Mikulovic, "Load management in an off-grid hybrid PV-Wind-Battery system using the power flow control algorithm and fuzzy logic controller," Electrical Engineering, vol.104, no. 4, pp. 2185-2195, 2022.
[CrossRef] [Web of Science Times Cited 2] [SCOPUS Times Cited 3]


[24] W. Zhuo, "Microgrid energy management strategy with battery energy storage system and approximate dynamic programming," 2018 37th Chinese Control Conference (CCC), IEEE, pp.7581-7587, 2018.
[CrossRef] [SCOPUS Times Cited 12]


[25] L. Xiong, P. Li, Z. Wang, J. Wang, "Multi-agent based multi objective renewable energy management for diversified community power consumers," Applied Energy, vol. 259, pp. 114140, 2020.
[CrossRef] [Web of Science Times Cited 47] [SCOPUS Times Cited 53]


[26] G. M. Masters, "Renewable and efficient electric power systems," pp. 410-527, Stanford University, 2004

[27] Decree on incentive measures for subsidized electricity producers, Official Gazette of the Republic of Serbia, no. 8/2013, 25th January 2013



References Weight

Web of Science® Citations for all references: 2,656 TCR
SCOPUS® Citations for all references: 3,448 TCR

Web of Science® Average Citations per reference: 95 ACR
SCOPUS® Average Citations per reference: 123 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2024-04-25 17:08 in 184 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2024
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: 


DNS Made Easy