Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.700
JCR 5-Year IF: 0.700
SCOPUS CiteScore: 1.8
Issues per year: 4
Current issue: Nov 2024
Next issue: Feb 2025
Avg review time: 56 days
Avg accept to publ: 60 days
APC: 300 EUR


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

3,030,153 unique visits
1,178,320 downloads
Since November 1, 2009



Robots online now
Googlebot
bingbot
DotBot
SemanticScholar


SCOPUS CiteScore

SCOPUS CiteScore


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 24 (2024)
 
     »   Issue 4 / 2024
 
     »   Issue 3 / 2024
 
     »   Issue 2 / 2024
 
     »   Issue 1 / 2024
 
 
 Volume 23 (2023)
 
     »   Issue 4 / 2023
 
     »   Issue 3 / 2023
 
     »   Issue 2 / 2023
 
     »   Issue 1 / 2023
 
 
 Volume 22 (2022)
 
     »   Issue 4 / 2022
 
     »   Issue 3 / 2022
 
     »   Issue 2 / 2022
 
     »   Issue 1 / 2022
 
 
 Volume 21 (2021)
 
     »   Issue 4 / 2021
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
  View all issues  


FEATURED ARTICLE

A Proposed Signal Reconstruction Algorithm over Bandlimited Channels for Wireless Communications, ASHOUR, A., KHALAF, A., HUSSEIN, A., HAMED, H., RAMADAN, A.
Issue 1/2023

AbstractPlus






LATEST NEWS

2024-Jun-20
Clarivate Analytics published the InCites Journal Citations Report for 2023. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.700 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.600.

2023-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2022. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.800 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 1.000.

2023-Jun-05
SCOPUS published the CiteScore for 2022, computed by using an improved methodology, counting the citations received in 2019-2022 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2022 is 2.0. For "General Computer Science" we rank #134/233 and for "Electrical and Electronic Engineering" we rank #478/738.

2022-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2021. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.825 (0.722 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.752.

2022-Jun-16
SCOPUS published the CiteScore for 2021, computed by using an improved methodology, counting the citations received in 2018-2021 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2021 is 2.5, the same as for 2020 but better than all our previous results.

Read More »


    
 

  2/2023 - 5

Stability Analysis Using Fractional-Order PI Controller in a Time-Delayed Single-Area Load Frequency Control System with Demand Response

KATIPOGLU, D. See more information about KATIPOGLU, D. on SCOPUS See more information about KATIPOGLU, D. on IEEExplore See more information about KATIPOGLU, D. on Web of Science
 
Extra paper information in View the paper record and citations in Google Scholar View the paper record and similar papers in Microsoft Bing View the paper record and similar papers in Semantic Scholar the AI-powered research tool
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,377 KB) | Citation | Downloads: 724 | Views: 1,137

Author keywords
delay systems, frequency control, PI control, power system control, stability analysis

References keywords
control(25), systems(19), frequency(16), power(15), load(13), stability(12), time(11), response(11), demand(11), delay(11)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2023-05-31
Volume 23, Issue 2, Year 2023, On page(s): 39 - 46
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2023.02005
Web of Science Accession Number: 001009953400005
SCOPUS ID: 85164347676

Abstract
Quick view
Full text preview
The current study investigates the stability analysis based on gain and phase margin (GPM) using fractional-order proportional-integral (FOPI) controller in a time-delayed single-area load frequency control (LFC) system with demand response (DR). The DR control loop is introduced into the classical LFC system to improve the frequency deviation. Although the DR enhances the systems reliability, the excessive use of open communication networks in the control of the LFC results in time delays that make the system unstable. A frequency-domain approach is proposed to compute the time delay that destabilizes the system using GPM values and different parameter values of the FOPI controller. This method converts the equation into an ordinary polynomial with no exponential terms by eliminating the exponential terms from the systems characteristic equation. The maximum time-delay values at which the system is marginally stable are calculated analytically using the new polynomial. Finally, the verification of the time delays calculated is demonstrated by simulation studies in the Matlab/Simulink environment and the root finder (quasi-polynomial mapping-based root finder, QPmR) algorithm to define the roots of polynomials with exponential terms providing information about their locations.


References | Cited By  «-- Click to see who has cited this paper

[1] P. M. Anderson, A. A. Fouad, "Power System Control and Stability," pp. 3-11, John Wiley & Sons, 2008

[2] I. Muhammad, M. S. Shabbir, S. Saleem, K. Bilal, R. Ulucak, "Nexus between willingness to pay for renewable energy sources: Evidence from Turkey," Environmental Science and Pollution Research, vol. 28, no. 3, pp. 2972-2986, 2021.
[CrossRef] [Web of Science Times Cited 65] [SCOPUS Times Cited 54]


[3] B. Vedik, R. Kumar, R. Deshmukh, S. Verma, C. K. Shiva, "Renewable energy-based load frequency stabilization of interconnected power systems using Quasi-Oppositional Dragonfly Algorithm," Journal of Control, Automation and Electrical Systems, vol. 32, no. 1, pp. 227-243, 2021.
[CrossRef] [Web of Science Times Cited 36] [SCOPUS Times Cited 75]


[4] Z. A. Obaid, L. M. Cipcigan, L. Abrahim, M. T. Muhssin, "Frequency control of future power systems: reviewing and evaluating challenges and new control methods," Journal of Modern Power Systems and Clean Energy, vol. 7, no. 1, pp. 9-25, 2019.
[CrossRef] [Web of Science Times Cited 117] [SCOPUS Times Cited 164]


[5] U. Ur Rehman, "A decentralized dynamic marketing-based demand response using electric vehicles in smart grid," Arabian Journal for Science and Engineering, vol. 45, pp. 6475-6488, 2020.
[CrossRef] [Web of Science Times Cited 7] [SCOPUS Times Cited 9]


[6] Q. Shi, C. F. Chen, A. Mammoli, F. Li, "Estimating the profile of incentive-based demand response (IBDR) by integrating technical models and social-behavioral factors," IEEE Transactions on Smart Grid, vol. 11, no. 1, pp. 171-183, 2019.
[CrossRef] [Web of Science Times Cited 84] [SCOPUS Times Cited 101]


[7] W. Huang, N. Zhang, C. Kang, M. Li, M. Huo, "From demand response to integrated demand response: Review and prospect of research and application," Protection and Control of Modern Power Systems, vol. 4, no. 1, pp. 1-13, 2019.
[CrossRef] [Web of Science Times Cited 185] [SCOPUS Times Cited 266]


[8] F. Wang, X. Ge, K. Li, Z. Mi, "Day-ahead market optimal bidding strategy and quantitative compensation mechanism design for load aggregator engaging demand response," IEEE Transactions on Industry Applications, vol. 55, no. 6, pp. 5564-5573, 2019.
[CrossRef] [SCOPUS Times Cited 107]


[9] S. A. Hosseini, M. Toulabi, A. S. Dobakhshari, A. Ashouri-Zadeh, A. M. Ranjbar, "Delay compensation of demand response and adaptive disturbance rejection applied to power system frequency control," IEEE Transactions on Power Systems, vol. 35, no. 3, pp. 2037-2046, 2019.
[CrossRef] [Web of Science Times Cited 53] [SCOPUS Times Cited 65]


[10] V. P. Singh, P. Samuel, N. Kishor, "Impact of demand response for frequency regulation in two-area thermal power system," International Transactions on Electrical Energy Systems, vol. 27, no. 2, pp. 1-23, 2017.
[CrossRef] [Web of Science Times Cited 31] [SCOPUS Times Cited 43]


[11] H. Wang, J. Liu, F. Yang, Y. Zhang, "Proportional-integral controller for stabilization of second-order delay processes," International Journal of Control, Automation and Systems, vol. 12, no. 6, pp. 1197-1206, 2014.
[CrossRef] [Web of Science Times Cited 6] [SCOPUS Times Cited 8]


[12] V. Celik, M. T. Ozdemir, K. Y. Lee, "Effects of fractional-order PI controller on delay margin in single-area delayed load frequency control systems," Journal of Modern Power Systems and Clean Energy, vol. 7, no. 2, pp. 380-389, 2019.
[CrossRef] [Web of Science Times Cited 33] [SCOPUS Times Cited 39]


[13] S. Sondhi, Y. V. Hote, "Fractional order PID controller for load frequency control," Energy Conversion and Management, vol. 85, pp. 343-353, 2014.
[CrossRef] [Web of Science Times Cited 190] [SCOPUS Times Cited 237]


[14] K. Bharti, V. P. Singh, S. P. Singh, "Impact of intelligent demand response for load frequency control in smart grid perspective," IETE Journal of Research, pp. 1-12, 2020.
[CrossRef] [Web of Science Times Cited 23] [SCOPUS Times Cited 18]


[15] D. Katipoglu, S. Sonmez, S. Ayasun, A. Naveed, "Impact of participation ratios on the stability delay margins computed by direct method for multiple-area load frequency control systems with demand response," Automatika, vol. 63, no. 1, pp. 185-197, 2022.
[CrossRef] [Web of Science Times Cited 3] [SCOPUS Times Cited 3]


[16] S. Ayasun, "Computation of time delay margin for power system small-signal stability," European Transactions on Electrical Power, vol. 19, no. 7, pp. 949-968, 2009.
[CrossRef] [Web of Science Times Cited 30] [SCOPUS Times Cited 34]


[17] A. Naveed, S. Sonmez, S. Ayasun, "Impact of electric vehicle aggregator with communication time delay on stability regions and stability delay margins in load frequency control system," Journal of Modern Power Systems and Clean Energy, vol. 9, no. 3, pp. 595-601, 2020.
[CrossRef] [Web of Science Times Cited 43] [SCOPUS Times Cited 54]


[18] H. Gunduz, S. Sonmez, S. Ayasun, "Comprehensive gain and phase margins based stability analysis of micro-grid frequency control system with constant communication time delays," IET Generation, Transmission & Distribution, vol. 11, no. 3, pp. 719-729, 2017.
[CrossRef] [Web of Science Times Cited 54] [SCOPUS Times Cited 63]


[19] K. Walton, J. E. Marshall, "Direct method for TDS stability analysis," IEE Proceedings D-Control Theory and Applications, vol. 134, no. 2, pp. 101-107, 1987
[CrossRef] [Web of Science Times Cited 258] [SCOPUS Times Cited 316]


[20] D. Katipoglu, S. Sonmez, S. Ayasun, A. Naveed, "The effect of demand response control on stability delay margins of load frequency control systems with communication time-delays," Turkish Journal of Electrical Engineering and Computer Sciences, vol. 29, no. 3, pp. 1383-1400, 2021.
[CrossRef] [Web of Science Times Cited 4] [SCOPUS Times Cited 4]


[21] C. A. Macana, E. Mojica-Nava, N. Quijano, "Time-delay effect on load frequency control for microgrids," 10th IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 544-549, 2013.
[CrossRef] [SCOPUS Times Cited 52]


[22] Z. V. Rekasius, "A stability test for systems with delays," In Joint Automatic Control Conference, vol. 17, no. 39, 1980.
[CrossRef]


[23] N. Vafamand, M. H. Khooban, T. Dragifevic, J. Boudjadar, M. H. Asemani, "Time-delayed stabilizing secondary load frequency control of shipboard microgrids," IEEE Systems Journal, vol. 13, no. 3, pp. 3233-3241, 2019.
[CrossRef] [Web of Science Times Cited 67] [SCOPUS Times Cited 82]


[24] S. K. Pradhan, D. K. Das, "H performance-based sliding mode control approach for load frequency control of interconnected power system with time delay," Arabian Journal for Science and Engineering, vol. 46, no. 2, pp. 1369-1382, 2021.
[CrossRef] [Web of Science Times Cited 9] [SCOPUS Times Cited 11]


[25] S. Ayasun, S. Sonmez, "Gain and phase margin based stability analysis of time delayed single area load frequency control system with fractional order PI controller," Journal of the Faculty of Engineering and Architecture of Gazi University, vol. 34, no. 2, pp. 945-959, 2019.
[CrossRef] [Web of Science Times Cited 7]


[26] M. A. Pakzad, S. Pakzad, M. A. Nekoui, "Exact method for the stability analysis of time delayed linear-time invariant fractional-order systems," IET Control Theory & Applications, vol. 9, no. 16, pp. 2357-2368, 2015.
[CrossRef] [Web of Science Times Cited 17] [SCOPUS Times Cited 19]


[27] Z. Y. Nie, Q. G. Wang, M. Wu, Y. He, "Combined gain and phase margins," ISA Transactions, vol. 48, no. 4, pp. 428-433, 2009.
[CrossRef] [Web of Science Times Cited 4] [SCOPUS Times Cited 3]


[28] T. Vyhlidal, P. Zitek, "QPmR-Quasi-polynomial root-finder: Algorithm update and examples," Delay Systems, pp. 299-312, 2014.
[CrossRef] [Web of Science Times Cited 64]


[29] Simulink, Model-based and system-based design using Simulink, Natick, MA, USA, MathWorks, 2000

[30] S. A. Pourmousavi, M. H. Nehrir, "Introducing dynamic demand response in the LFC model," IEEE Transactions on Power Systems, vol. 29, no. 4, pp. 1562-1572, 2014.
[CrossRef] [Web of Science Times Cited 140] [SCOPUS Times Cited 165]


[31] K. S. Ko, D. K. Sung, "The effect of EV aggregators with time-varying delays on the stability of a load frequency control system," IEEE Transactions on Power Systems, vol. 33, no. 1, pp. 669-680, 2017.
[CrossRef] [Web of Science Times Cited 109] [SCOPUS Times Cited 131]




References Weight

Web of Science® Citations for all references: 1,639 TCR
SCOPUS® Citations for all references: 2,123 TCR

Web of Science® Average Citations per reference: 51 ACR
SCOPUS® Average Citations per reference: 66 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2024-12-03 04:21 in 197 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2024
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: 


DNS Made Easy