3/2016 - 1 | View TOC | « Previous Article | Next Article » |
Extracting Impurity Locations using Scanning Capacitance Microscopy MeasurementsAGHAEI, S. , ANDREI, P. , HAGMANN, M. |
Extra paper information in |
Click to see author's profile in SCOPUS, IEEE Xplore, Web of Science |
Download PDF (1,794 KB) | Citation | Downloads: 1,665 | Views: 3,264 |
Author keywords
doping, fluctuations, ion implantation, nanoscale devices, scanning probe microscopy
References keywords
analysis(11), devices(9), capacitance(9), scanning(8), microscopy(8), ipfa(8), failure(8), dopant(8), semiconductor(7), random(5)
Blue keywords are present in both the references section and the paper title.
About this article
Date of Publication: 2016-08-31
Volume 16, Issue 3, Year 2016, On page(s): 3 - 8
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2016.03001
Web of Science Accession Number: 000384750000001
SCOPUS ID: 84991047753
Abstract
In this article we investigate the possibility to use scanning capacitance microscopy (SCM) for the 2-D and 3-D atomistic dopant profiling of semiconductor materials. For this purpose, we first analyze the effects of random dopant fluctuations (RDF) on SCM measurements with nanoscale probes and show that the discrete and random locations of dopant impurities significantly affect the differential capacitance measured in SCM experiments if the dimension of the probe is below 50 nm. Then, we present an algorithm to compute the x, y, and z coordinates of the ionized impurities in the semiconductor material using a set of SCM measurements. The algorithm is based on evaluating the doping sensitivity functions of the differential capacitance and uses a gradient-based iterative method to compute the locations of dopants. Finally, we discuss a standard simulation case and show that we are able to successfully retrieve the locations of the ionized impurities using the proposed algorithm. |
References | | | Cited By |
Web of Science® Times Cited: 3 [View]
View record in Web of Science® [View]
View Related Records® [View]
Updated today
SCOPUS® Times Cited: 3
View record in SCOPUS® [Free preview]
View citations in SCOPUS® [Free preview]
[1] Simulation of the Frequency Comb Induced by a Periodically Excited Tunnel Junction in Silicon, Zhu, Chen, Andrei, Petru, Hagmann, Mark, 2017 IEEE Workshop on Microelectronics and Electron Devices (WMED), ISBN 978-1-5386-3909-2, 2017.
Digital Object Identifier: 10.1109/WMED.2017.7916934 [CrossRef]
Disclaimer: All information displayed above was retrieved by using remote connections to respective databases. For the best user experience, we update all data by using background processes, and use caches in order to reduce the load on the servers we retrieve the information from. As we have no control on the availability of the database servers and sometimes the Internet connectivity may be affected, we do not guarantee the information is correct or complete. For the most accurate data, please always consult the database sites directly. Some external links require authentication or an institutional subscription.
Web of Science® is a registered trademark of Clarivate Analytics, Scopus® is a registered trademark of Elsevier B.V., other product names, company names, brand names, trademarks and logos are the property of their respective owners.
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania
All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.
Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.
Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.