Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.700
JCR 5-Year IF: 0.700
SCOPUS CiteScore: 1.8
Issues per year: 4
Current issue: Aug 2024
Next issue: Nov 2024
Avg review time: 58 days
Avg accept to publ: 60 days
APC: 300 EUR


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,991,770 unique visits
1,161,753 downloads
Since November 1, 2009



Robots online now
DotBot
SiteExplorer
bingbot


SCOPUS CiteScore

SCOPUS CiteScore


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 24 (2024)
 
     »   Issue 3 / 2024
 
     »   Issue 2 / 2024
 
     »   Issue 1 / 2024
 
 
 Volume 23 (2023)
 
     »   Issue 4 / 2023
 
     »   Issue 3 / 2023
 
     »   Issue 2 / 2023
 
     »   Issue 1 / 2023
 
 
 Volume 22 (2022)
 
     »   Issue 4 / 2022
 
     »   Issue 3 / 2022
 
     »   Issue 2 / 2022
 
     »   Issue 1 / 2022
 
 
 Volume 21 (2021)
 
     »   Issue 4 / 2021
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
  View all issues  








LATEST NEWS

2024-Jun-20
Clarivate Analytics published the InCites Journal Citations Report for 2023. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.700 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.600.

2023-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2022. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.800 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 1.000.

2023-Jun-05
SCOPUS published the CiteScore for 2022, computed by using an improved methodology, counting the citations received in 2019-2022 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2022 is 2.0. For "General Computer Science" we rank #134/233 and for "Electrical and Electronic Engineering" we rank #478/738.

2022-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2021. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.825 (0.722 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.752.

2022-Jun-16
SCOPUS published the CiteScore for 2021, computed by using an improved methodology, counting the citations received in 2018-2021 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2021 is 2.5, the same as for 2020 but better than all our previous results.

Read More »


    
 

  4/2018 - 10

 HIGHLY CITED PAPER 

Indoor Localization using Voronoi Tessellation

ARIF, M. See more information about ARIF, M. on SCOPUS See more information about ARIF, M. on IEEExplore See more information about ARIF, M. on Web of Science, WYNE, S. See more information about  WYNE, S. on SCOPUS See more information about  WYNE, S. on SCOPUS See more information about WYNE, S. on Web of Science, JUNAID NAWAZ, A. See more information about JUNAID NAWAZ, A. on SCOPUS See more information about JUNAID NAWAZ, A. on SCOPUS See more information about JUNAID NAWAZ, A. on Web of Science
 
Extra paper information in View the paper record and citations in Google Scholar View the paper record and similar papers in Microsoft Bing View the paper record and similar papers in Semantic Scholar the AI-powered research tool
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,387 KB) | Citation | Downloads: 1,360 | Views: 2,722

Author keywords
indoor environments, interpolation, radio propagation, simultaneous localization and mapping, wireless LAN

References keywords
systems(10), location(9), indoor(9), localization(7), positioning(6), services(5), voronoi(4), information(4)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2018-11-30
Volume 18, Issue 4, Year 2018, On page(s): 85 - 90
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2018.04010
Web of Science Accession Number: 000451843400010
SCOPUS ID: 85058775391

Abstract
Quick view
Full text preview
Recently the use of received signal strength values from a wireless local area network has received significant research interest for indoor localization. This work investigates a Voronoi-based interpolation method to improve indoor localization performance. The region of interest is spanned by reference measurement locations, termed as anchors. The proposed method is shown to outperform well-known localization techniques such as the k-Nearest Neighbor (k-NN) and the Inverse Distance Weighting (IDW) methods in terms of accuracy and precision. Our results show that for a 20 m x 20 m room the proposed scheme can achieve a location accuracy of 5.7 m with at most 5 anchors, whereas the IDW and k-NN techniques attain location accuracies of only 6.1 m and 6.5 m, respectively, under the same conditions. These performance gains are achieved while maintaining the same number of anchors in the system calibration phase for all the considered techniques.


References | Cited By

Cited-By Clarivate Web of Science

Web of Science® Times Cited: 4 [View]
View record in Web of Science® [View]
View Related Records® [View]

Updated 3 days, 4 hours ago


Cited-By SCOPUS

SCOPUS® Times Cited: 6
View record in SCOPUS®
[Free preview]
View citations in SCOPUS® [Free preview]

Updated 3 days, 4 hours ago

Cited-By CrossRef

[1] A Voronoi Diagram-Based Grouping Test Localization Scheme in Wireless Sensor Networks, Li, Guangming, Xu, Menghui, Teng, Gaofei, Yang, Wei, Mak, Shu-Lun, Li, Chun-Yin, Lee, Chi-Chung, Electronics, ISSN 2079-9292, Issue 18, Volume 11, 2022.
Digital Object Identifier: 10.3390/electronics11182961
[CrossRef]

[2] Formal estimation of wireless network services for signal strength and electromagnetic wave association in an International Green University, Fan, Yang-Hsin, Scientific Reports, ISSN 2045-2322, Issue 1, Volume 14, 2024.
Digital Object Identifier: 10.1038/s41598-024-71681-z
[CrossRef]

[3] The Methodology of Creating Variable Resolution Maps Based on the Example of Passability Maps, Pokonieczny, Krzysztof, ISPRS International Journal of Geo-Information, ISSN 2220-9964, Issue 12, Volume 9, 2020.
Digital Object Identifier: 10.3390/ijgi9120738
[CrossRef]

[4] Recent advances in vision-based indoor navigation: A systematic literature review, Khan, Dawar, Cheng, Zhanglin, Uchiyama, Hideaki, Ali, Sikandar, Asshad, Muhammad, Kiyokawa, Kiyoshi, Computers & Graphics, ISSN 0097-8493, Issue , 2022.
Digital Object Identifier: 10.1016/j.cag.2022.03.005
[CrossRef]

[5] A Voronoi Diagram-Based Grouping Test Localization Scheme in Wireless Sensor Networks, Xu, Menghui, Li, Guangming, 2019 IEEE 19th International Conference on Communication Technology (ICCT), ISBN 978-1-7281-0535-2, 2019.
Digital Object Identifier: 10.1109/ICCT46805.2019.8947133
[CrossRef]

Updated 3 days, 4 hours ago

Disclaimer: All information displayed above was retrieved by using remote connections to respective databases. For the best user experience, we update all data by using background processes, and use caches in order to reduce the load on the servers we retrieve the information from. As we have no control on the availability of the database servers and sometimes the Internet connectivity may be affected, we do not guarantee the information is correct or complete. For the most accurate data, please always consult the database sites directly. Some external links require authentication or an institutional subscription.

Web of Science® is a registered trademark of Clarivate Analytics, Scopus® is a registered trademark of Elsevier B.V., other product names, company names, brand names, trademarks and logos are the property of their respective owners.


Copyright ©2001-2024
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: 


DNS Made Easy