2/2011 - 13 |
Optimal Power Flow Control by Rotary Power Flow ControllerHADDADI, A. M. , KAZEMI, A. |
Extra paper information in |
Click to see author's profile in SCOPUS, IEEE Xplore, Web of Science |
Download PDF (588 KB) | Citation | Downloads: 1,900 | Views: 7,478 |
Author keywords
flexible AC transmission systems (FACTS), optimal power flow (OPF), power injection model, rotary power flow controller (RPFC), rotary phase shifting transformer (RPST)
References keywords
power(34), flow(16), control(9), systems(5), facts(5), controller(5), tpwrs(4), modeling(4)
Blue keywords are present in both the references section and the paper title.
About this article
Date of Publication: 2011-05-30
Volume 11, Issue 2, Year 2011, On page(s): 79 - 86
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2011.02013
Web of Science Accession Number: 000293840500013
SCOPUS ID: 79958802201
Abstract
This paper presents a new power flow model for rotary power flow controller (RPFC). RPFC injects a series voltage into the transmission line and provides series compensation and phase shifting simultaneously. Therefore, it is able to control the transmission line impedance and the active power flow through it. An RPFC is composed mainly of two rotary phase shifting transformers (RPST) and two conventional (series and shunt) transformers. Structurally, an RPST consists of two windings (stator and rotor windings). The rotor windings of the two RPSTs are connected in parallel and their stator windings are in series. The injected voltage is proportional to the vector sum of the stator voltages and so its amplitude and angle are affected by the rotor position of the two RPSTs. This paper, describes the steady state operation and single-phase equivalent circuit of the RPFC. Also in this paper, a new power flow model, based on power injection model of flexible ac transmission system (FACTS) controllers, suitable for the power flow analysis is introduced. Proposed model is used to solve optimal power flow (OPF) problem in IEEE standard test systems incorporating RPFC and the optimal settings and location of the RPFC is determined. |
References | | | Cited By |
Web of Science® Times Cited: 9 [View]
View record in Web of Science® [View]
View Related Records® [View]
Updated 2 days, 18 hours ago
SCOPUS® Times Cited: 15
View record in SCOPUS® [Free preview]
View citations in SCOPUS® [Free preview]
[1] An Electromagnetic Var Compensator Suitable for Wind Power Access and Its Control Strategy, Yan, Xiangwu, Guo, Yan, Jia, Jiaoxin, Aslam, Waseem, Qi, Bingbao, Wang, Yang, Xu, Xiaolin, Energies, ISSN 1996-1073, Issue 15, Volume 15, 2022.
Digital Object Identifier: 10.3390/en15155572 [CrossRef]
[2] An accurate power control strategy for electromagnetic rotary power controllers, Yan, Xiangwu, Shao, Chen, Jia, Jiaoxin, Aslam, Waseem, Peng, Weifeng, Yang, Ruojia, IET Generation, Transmission & Distribution, ISSN 1751-8687, Issue 15, Volume 17, 2023.
Digital Object Identifier: 10.1049/gtd2.12901 [CrossRef]
[3] Stability analysis of rotary power flow controller, Tolue Khayami, Mohammad, Shayanfar, Heidarali, Kazemi, Ahad, International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, ISSN 0894-3370, Issue 4, Volume 28, 2015.
Digital Object Identifier: 10.1002/jnm.2025 [CrossRef]
[4] Research on the multi-scenario control strategy of an active distribution network based on Rotary Power Flow controller, Mingming, Shi, Jun, Ma, Xiaolong, Xiao, Fan, Wu, Rui-ming, Fang, Liao, Qiangqiang, Science and Technology for Energy Transition, ISSN 2804-7699, Issue , 2024.
Digital Object Identifier: 10.2516/stet/2024042 [CrossRef]
[5] Research on novel var compensator based on dual-rotary phase-shifting transformers and its control strategy, Yan, Xiangwu, Deng, Wanjun, Wang, Guanghua, Rasool, Aazim, Qi, Shaomeng, International Journal of Electrical Power & Energy Systems, ISSN 0142-0615, Issue , 2023.
Digital Object Identifier: 10.1016/j.ijepes.2022.108632 [CrossRef]
[6] Wide area measurement/wide area information‐based control strategy to fast relieve overloads in a self‐healing power grid, Jiao, Zaibin, Wang, Xiaobing, Gong, Heteng, IET Generation, Transmission & Distribution, ISSN 1751-8695, Issue 6, Volume 8, 2014.
Digital Object Identifier: 10.1049/iet-gtd.2013.0761 [CrossRef]
[7] Power System Stability Improvement through the Coordination of TCPS-based Damping Controller and Power System Stabilizer, ALI, M. A. S., MEHMOOD, K. K., KIM, C.-H., Advances in Electrical and Computer Engineering, ISSN 1582-7445, Issue 4, Volume 17, 2017.
Digital Object Identifier: 10.4316/AECE.2017.04004 [CrossRef] [Full text]
[8] Optimal design and performance analysis of Rotating Power Flow Controller, Yan, Xiangwu, Li, Yuzhen, Lian, Kaige, Journal of Physics: Conference Series, ISSN 1742-6588, Issue 1, Volume 2530, 2023.
Digital Object Identifier: 10.1088/1742-6596/2530/1/012025 [CrossRef]
[9] Flexible loop closing control method for an active distribution network based on dual rotary phase shifting transformers, Yan, Xiangwu, Peng, Weifeng, Wang, Yang, Aslam, Waseem, Shao, Chen, Li, Tiecheng, IET Generation, Transmission & Distribution, ISSN 1751-8687, Issue 20, Volume 16, 2022.
Digital Object Identifier: 10.1049/gtd2.12593 [CrossRef]
[10] A control strategy to fast relieve overload in a self-healing smart grid, Zaibin Jiao, , Kun Men, , Jin Zhong,, 2012 IEEE Power and Energy Society General Meeting, ISBN 978-1-4673-2729-9, 2012.
Digital Object Identifier: 10.1109/PESGM.2012.6345042 [CrossRef]
Disclaimer: All information displayed above was retrieved by using remote connections to respective databases. For the best user experience, we update all data by using background processes, and use caches in order to reduce the load on the servers we retrieve the information from. As we have no control on the availability of the database servers and sometimes the Internet connectivity may be affected, we do not guarantee the information is correct or complete. For the most accurate data, please always consult the database sites directly. Some external links require authentication or an institutional subscription.
Web of Science® is a registered trademark of Clarivate Analytics, Scopus® is a registered trademark of Elsevier B.V., other product names, company names, brand names, trademarks and logos are the property of their respective owners.
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania
All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.
Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.
Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.