2/2015 - 13 |
Optimizing the Forward Algorithm for Hidden Markov Model on IBM Roadrunner clustersSOIMAN, S.-I. , RUSU, I. , PENTIUC, S.-G. |
Extra paper information in |
Click to see author's profile in SCOPUS, IEEE Xplore, Web of Science |
Download PDF (1,006 KB) | Citation | Downloads: 835 | Views: 3,571 |
Author keywords
forward algorithm, hidden Markov models, multicore processing, parallel hybrid architectures, parallel programming, performance analysis
References keywords
parallel(9), models(6), markov(6), hidden(6), cell(6), systems(5), ipdps(5), distributed(5), computing(5), recognition(4)
Blue keywords are present in both the references section and the paper title.
About this article
Date of Publication: 2015-05-31
Volume 15, Issue 2, Year 2015, On page(s): 103 - 108
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2015.02013
Web of Science Accession Number: 000356808900013
SCOPUS ID: 84979846307
Abstract
In this paper we present a parallel solution of the Forward Algorithm for Hidden Markov Models. The Forward algorithm compute a probability of a hidden state from Markov model at a certain time, this process being recursively. The whole process requires large computational resources for those models with a large number of states and long observation sequences. Our solution in order to reduce the computational time is a multilevel parallelization of Forward algorithm. Two types of cores were used in our implementation, for each level of parallelization, cores that are graved on the same chip of PowerXCell8i processor. This hybrid architecture of processors permitted us to obtain a speedup factor over 40 relative to the sequential algorithm for a model with 24 states and 25 millions of observable symbols. Experimental results showed that the parallel Forward algorithm can evaluate the probability of an observation sequence on a hidden Markov model 40 times faster than the classic one does. Based on the performance obtained, we demonstrate the applicability of this parallel implementation of Forward algorithm in complex problems such as large vocabulary speech recognition. |
References | | | Cited By |
Web of Science® Times Cited: 1 [View]
View record in Web of Science® [View]
View Related Records® [View]
Updated today
SCOPUS® Times Cited: 1
View record in SCOPUS® [Free preview]
View citations in SCOPUS® [Free preview]
[1] A Hidden Markov Model and Fuzzy Logic Forecasting Approach for Solar Geyser Water Heating, de Bruyn, Daniel N., Kotze, Ben, Hurst, William, Infrastructures, ISSN 2412-3811, Issue 5, Volume 6, 2021.
Digital Object Identifier: 10.3390/infrastructures6050067 [CrossRef]
Disclaimer: All information displayed above was retrieved by using remote connections to respective databases. For the best user experience, we update all data by using background processes, and use caches in order to reduce the load on the servers we retrieve the information from. As we have no control on the availability of the database servers and sometimes the Internet connectivity may be affected, we do not guarantee the information is correct or complete. For the most accurate data, please always consult the database sites directly. Some external links require authentication or an institutional subscription.
Web of Science® is a registered trademark of Clarivate Analytics, Scopus® is a registered trademark of Elsevier B.V., other product names, company names, brand names, trademarks and logos are the property of their respective owners.
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania
All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.
Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.
Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.