3/2015 - 13 |
Experimental Method of Determining the Equivalent Circuit Parameters of a Switched Reluctance MachineVUKADINOVIC, D. , GRBIN, S. , BASIC, M. |
Extra paper information in |
Click to see author's profile in SCOPUS, IEEE Xplore, Web of Science |
Download PDF (1,229 KB) | Citation | Downloads: 872 | Views: 3,346 |
Author keywords
equivalent circuits, iron losses, inductance measurement, model, switched reluctance machine
References keywords
reluctance(21), switched(19), motor(8), power(7), machines(5), motors(4), losses(4), equivalent(4), electric(4), circuit(4)
Blue keywords are present in both the references section and the paper title.
About this article
Date of Publication: 2015-08-31
Volume 15, Issue 3, Year 2015, On page(s): 93 - 98
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2015.03013
Web of Science Accession Number: 000360171500013
SCOPUS ID: 84940743265
Abstract
This paper presents an equivalent-circuit-based method to experimentally determine the phase inductance and the iron-loss resistance of a switched reluctance machine (SRM). The proposed equivalent circuit of the SRM phase consists of the winding resistance, the winding inductance and the iron-loss resistance. In this paper, the iron-loss resistance is represented as variable with respect to the phase current, the dc supply voltage and the rotor position. The phase inductance is represented as variable with respect to the phase current and the rotor position. The phase winding resistance is represented by a constant parameter. The proposed method allows estimation of the rotary SRM's iron losses for single-pulse operating regimes. |
References | | | Cited By |
Web of Science® Times Cited: 3 [View]
View record in Web of Science® [View]
View Related Records® [View]
Updated today
SCOPUS® Times Cited: 3
View record in SCOPUS® [Free preview]
View citations in SCOPUS® [Free preview]
[1] Research on Torque Ripple Minimization of Double-stator Switched Reluctance Motor Using Finite Element Method, Das GUPTA, T., CHAUDHARY, K., Advances in Electrical and Computer Engineering, ISSN 1582-7445, Issue 4, Volume 21, 2021.
Digital Object Identifier: 10.4316/AECE.2021.04015 [CrossRef] [Full text]
[2] Motor-drive solution for light electric vehicles based on a switched reluctance machine, Ruba, Mircea, Fodorean, Daniel, 2016 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), ISBN 978-1-4673-8692-0, 2016.
Digital Object Identifier: 10.1109/AQTR.2016.7501372 [CrossRef]
Disclaimer: All information displayed above was retrieved by using remote connections to respective databases. For the best user experience, we update all data by using background processes, and use caches in order to reduce the load on the servers we retrieve the information from. As we have no control on the availability of the database servers and sometimes the Internet connectivity may be affected, we do not guarantee the information is correct or complete. For the most accurate data, please always consult the database sites directly. Some external links require authentication or an institutional subscription.
Web of Science® is a registered trademark of Clarivate Analytics, Scopus® is a registered trademark of Elsevier B.V., other product names, company names, brand names, trademarks and logos are the property of their respective owners.
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania
All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.
Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.
Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.