Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.700
JCR 5-Year IF: 0.700
SCOPUS CiteScore: 1.8
Issues per year: 4
Current issue: Aug 2024
Next issue: Nov 2024
Avg review time: 55 days
Avg accept to publ: 60 days
APC: 300 EUR


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,989,837 unique visits
1,159,710 downloads
Since November 1, 2009



Robots online now
DotBot
Qwantbot
bingbot


SCOPUS CiteScore

SCOPUS CiteScore


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 24 (2024)
 
     »   Issue 3 / 2024
 
     »   Issue 2 / 2024
 
     »   Issue 1 / 2024
 
 
 Volume 23 (2023)
 
     »   Issue 4 / 2023
 
     »   Issue 3 / 2023
 
     »   Issue 2 / 2023
 
     »   Issue 1 / 2023
 
 
 Volume 22 (2022)
 
     »   Issue 4 / 2022
 
     »   Issue 3 / 2022
 
     »   Issue 2 / 2022
 
     »   Issue 1 / 2022
 
 
 Volume 21 (2021)
 
     »   Issue 4 / 2021
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
  View all issues  








LATEST NEWS

2024-Jun-20
Clarivate Analytics published the InCites Journal Citations Report for 2023. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.700 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.600.

2023-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2022. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.800 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 1.000.

2023-Jun-05
SCOPUS published the CiteScore for 2022, computed by using an improved methodology, counting the citations received in 2019-2022 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2022 is 2.0. For "General Computer Science" we rank #134/233 and for "Electrical and Electronic Engineering" we rank #478/738.

2022-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2021. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.825 (0.722 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.752.

2022-Jun-16
SCOPUS published the CiteScore for 2021, computed by using an improved methodology, counting the citations received in 2018-2021 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2021 is 2.5, the same as for 2020 but better than all our previous results.

Read More »


    
 

  1/2015 - 14

 HIGHLY CITED PAPER 

FPGA Based Compact and Efficient Full Image Buffering for Neighborhood Operations

KAZMI, M. See more information about KAZMI, M. on SCOPUS See more information about KAZMI, M. on IEEExplore See more information about KAZMI, M. on Web of Science, AZIZ, A. See more information about  AZIZ, A. on SCOPUS See more information about  AZIZ, A. on SCOPUS See more information about AZIZ, A. on Web of Science, AKHTAR, P. See more information about  AKHTAR, P. on SCOPUS See more information about  AKHTAR, P. on SCOPUS See more information about AKHTAR, P. on Web of Science, KUNDI, D.-S. See more information about KUNDI, D.-S. on SCOPUS See more information about KUNDI, D.-S. on SCOPUS See more information about KUNDI, D.-S. on Web of Science
 
Extra paper information in View the paper record and citations in Google Scholar View the paper record and similar papers in Microsoft Bing View the paper record and similar papers in Semantic Scholar the AI-powered research tool
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (780 KB) | Citation | Downloads: 1,152 | Views: 4,342

Author keywords
buffer storage, convolver, field programmable gate array, image processing, image storage

References keywords
processing(15), fpga(13), systems(11), image(11), time(10), real(10), implementation(7), design(7), vision(6), hardware(6)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2015-02-28
Volume 15, Issue 1, Year 2015, On page(s): 95 - 104
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2015.01014
Web of Science Accession Number: 000352158600014
SCOPUS ID: 84924812669

Abstract
Quick view
Full text preview
Image processing systems based on neighborhood operations i.e. Neighborhood Processing Systems (NPSs) are computationally expensive and memory intensive. Field Programmable Gate Array (FPGA) based parallel processing architectures accelerate calculations of NPS provided if they have fast external-memory data access by using on-chip data buffers. The conventional data buffers namely full Row Buffers (RBs) implemented with FPGA embedded memory resources i.e. Block RAMs (BRAMs) are resource inefficient. It makes overall NPS implementation on FPGA expensive and infeasible especially for resource-constraint environment. This paper presents compact and efficient image buffering architecture with an additional feature of pre-fetching. Proposed design fits in minimal BRAMs by using small yet efficient Main Control Unit (MCU). Its optimal multi-rated BRAM data accessing technique reduces BRAM cost to provide multiple pixels of pre-fetched data/clock to NPS in a fixed pattern. It controls and synchronizes BRAMs operations to attain throughput of 1 clock/pixel. Thus our buffer architecture with 66% reduction in BRAM requirement as compared to conventional RBs is capable to support buffering for real time systems with high resolution (1080x1920@62fps). Therefore proposed buffer architecture can suitably replace conventional RB in any real time NPS application.


References | Cited By

Cited-By Clarivate Web of Science

Web of Science® Times Cited: 5 [View]
View record in Web of Science® [View]
View Related Records® [View]

Updated today


Cited-By SCOPUS

SCOPUS® Times Cited: 5
View record in SCOPUS®
[Free preview]
View citations in SCOPUS® [Free preview]

Updated today

Cited-By CrossRef

[1] Image normalization in embedded systems, Monteiro, Heron Aragão, Brito, Alisson Vasconcelos de, Melcker, Elmar Uwe Kurt, Journal of Real-Time Image Processing, ISSN 1861-8200, Issue 6, Volume 18, 2021.
Digital Object Identifier: 10.1007/s11554-021-01098-8
[CrossRef]

[2] Resource-Efficient Image Buffer Architecture for Neighborhood Processors, Kazmi, Majida, Aziz, Arshad, Khan, Hashim Raza, Qazi, Saad Ahmed, Stergioulas, Lampros K., IEEE Access, ISSN 2169-3536, Issue , 2020.
Digital Object Identifier: 10.1109/ACCESS.2020.3025344
[CrossRef]

Updated today

Disclaimer: All information displayed above was retrieved by using remote connections to respective databases. For the best user experience, we update all data by using background processes, and use caches in order to reduce the load on the servers we retrieve the information from. As we have no control on the availability of the database servers and sometimes the Internet connectivity may be affected, we do not guarantee the information is correct or complete. For the most accurate data, please always consult the database sites directly. Some external links require authentication or an institutional subscription.

Web of Science® is a registered trademark of Clarivate Analytics, Scopus® is a registered trademark of Elsevier B.V., other product names, company names, brand names, trademarks and logos are the property of their respective owners.


Copyright ©2001-2024
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: 


DNS Made Easy