Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.700
JCR 5-Year IF: 0.700
SCOPUS CiteScore: 1.8
Issues per year: 4
Current issue: Aug 2024
Next issue: Nov 2024
Avg review time: 58 days
Avg accept to publ: 60 days
APC: 300 EUR


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,991,804 unique visits
1,161,765 downloads
Since November 1, 2009



Robots online now
bingbot
DotBot


SCOPUS CiteScore

SCOPUS CiteScore


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 24 (2024)
 
     »   Issue 3 / 2024
 
     »   Issue 2 / 2024
 
     »   Issue 1 / 2024
 
 
 Volume 23 (2023)
 
     »   Issue 4 / 2023
 
     »   Issue 3 / 2023
 
     »   Issue 2 / 2023
 
     »   Issue 1 / 2023
 
 
 Volume 22 (2022)
 
     »   Issue 4 / 2022
 
     »   Issue 3 / 2022
 
     »   Issue 2 / 2022
 
     »   Issue 1 / 2022
 
 
 Volume 21 (2021)
 
     »   Issue 4 / 2021
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
  View all issues  








LATEST NEWS

2024-Jun-20
Clarivate Analytics published the InCites Journal Citations Report for 2023. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.700 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.600.

2023-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2022. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.800 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 1.000.

2023-Jun-05
SCOPUS published the CiteScore for 2022, computed by using an improved methodology, counting the citations received in 2019-2022 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2022 is 2.0. For "General Computer Science" we rank #134/233 and for "Electrical and Electronic Engineering" we rank #478/738.

2022-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2021. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.825 (0.722 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.752.

2022-Jun-16
SCOPUS published the CiteScore for 2021, computed by using an improved methodology, counting the citations received in 2018-2021 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2021 is 2.5, the same as for 2020 but better than all our previous results.

Read More »


    
 

  2/2016 - 15
View TOC | « Previous Article | Next Article »

 HIGHLY CITED PAPER 

Semi-Supervised Multi-View Ensemble Learning Based On Extracting Cross-View Correlation

ZALL, R. See more information about ZALL, R. on SCOPUS See more information about ZALL, R. on IEEExplore See more information about ZALL, R. on Web of Science, KEYVANPOUR, M. R. See more information about KEYVANPOUR, M. R. on SCOPUS See more information about KEYVANPOUR, M. R. on SCOPUS See more information about KEYVANPOUR, M. R. on Web of Science
 
Extra paper information in View the paper record and citations in Google Scholar View the paper record and similar papers in Microsoft Bing View the paper record and similar papers in Semantic Scholar the AI-powered research tool
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,549 KB) | Citation | Downloads: 1,149 | Views: 3,453

Author keywords
boosting, correlation, classification algorithm, sampling methods, semi-supervised learning

References keywords
semi(17), supervised(16), learning(15), data(15), recognition(11), multi(10), analysis(10), view(9), pattern(9), training(7)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2016-05-31
Volume 16, Issue 2, Year 2016, On page(s): 111 - 124
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2016.02015
Web of Science Accession Number: 000376996100015
SCOPUS ID: 84974853415

Abstract
Quick view
Full text preview
Correlated information between different views incorporate useful for learning in multi view data. Canonical correlation analysis (CCA) plays important role to extract these information. However, CCA only extracts the correlated information between paired data and cannot preserve correlated information between within-class samples. In this paper, we propose a two-view semi-supervised learning method called semi-supervised random correlation ensemble base on spectral clustering (SS_RCE). SS_RCE uses a multi-view method based on spectral clustering which takes advantage of discriminative information in multiple views to estimate labeling information of unlabeled samples. In order to enhance discriminative power of CCA features, we incorporate the labeling information of both unlabeled and labeled samples into CCA. Then, we use random correlation between within-class samples from cross view to extract diverse correlated features for training component classifiers. Furthermore, we extend a general model namely SSMV_RCE to construct ensemble method to tackle semi-supervised learning in the presence of multiple views. Finally, we compare the proposed methods with existing multi-view feature extraction methods using multi-view semi-supervised ensembles. Experimental results on various multi-view data sets are presented to demonstrate the effectiveness of the proposed methods.


References | Cited By

Cited-By Clarivate Web of Science

Web of Science® Times Cited: 4 [View]
View record in Web of Science® [View]
View Related Records® [View]

Updated today


Cited-By SCOPUS

SCOPUS® Times Cited: 4
View record in SCOPUS®
[Free preview]
View citations in SCOPUS® [Free preview]

Updated today

Cited-By CrossRef

[1] Multiview Clustering via Unified and View-Specific Embeddings Learning, Yin, Qiyue, Wu, Shu, Wang, Liang, IEEE Transactions on Neural Networks and Learning Systems, ISSN 2162-237X, Issue 11, Volume 29, 2018.
Digital Object Identifier: 10.1109/TNNLS.2017.2786743
[CrossRef]

[2] Transfer-based adaptive tree for multimodal sentiment analysis based on user latent aspects, Rahmani, Sana, Hosseini, Saeid, Zall, Raziyeh, Kangavari, M. Reza, Kamran, Sara, Hua, Wen, Knowledge-Based Systems, ISSN 0950-7051, Issue , 2023.
Digital Object Identifier: 10.1016/j.knosys.2022.110219
[CrossRef]

[3] A human fall detection framework based on multi-camera fusion, Ezatzadeh, Shabnam, Keyvanpour, Mohammad Reza, Shojaedini, Seyed Vahab, Journal of Experimental & Theoretical Artificial Intelligence, ISSN 0952-813X, Issue 6, Volume 34, 2022.
Digital Object Identifier: 10.1080/0952813X.2021.1938696
[CrossRef]

Updated today

Disclaimer: All information displayed above was retrieved by using remote connections to respective databases. For the best user experience, we update all data by using background processes, and use caches in order to reduce the load on the servers we retrieve the information from. As we have no control on the availability of the database servers and sometimes the Internet connectivity may be affected, we do not guarantee the information is correct or complete. For the most accurate data, please always consult the database sites directly. Some external links require authentication or an institutional subscription.

Web of Science® is a registered trademark of Clarivate Analytics, Scopus® is a registered trademark of Elsevier B.V., other product names, company names, brand names, trademarks and logos are the property of their respective owners.


Copyright ©2001-2024
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: 


DNS Made Easy