4/2013 - 15 |
Improved Low Power FPGA Binding of Datapaths from Data Flow Graphs with NSGA II -based Schedule SelectionRAM, D. S. H. , BHUVANESWARI, M. C. , UMADEVI, S. |
Extra paper information in |
Click to see author's profile in SCOPUS, IEEE Xplore, Web of Science |
Download PDF (613 KB) | Citation | Downloads: 1,140 | Views: 3,619 |
Author keywords
high level synthesis, field programmable gate arrays, power dissipation, genetic algorithms, reconfigurable logic
References keywords
power(11), design(10), vlsi(9), systems(8), optimization(7), level(7), high(7), integration(5), evolutionary(5), very(4)
Blue keywords are present in both the references section and the paper title.
About this article
Date of Publication: 2013-11-30
Volume 13, Issue 4, Year 2013, On page(s): 85 - 92
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2013.04015
Web of Science Accession Number: 000331461300015
SCOPUS ID: 84890198448
Abstract
FPGAs are increasingly being used to implement data path intensive algorithms for signal processing and image processing applications. In High Level Synthesis of Data Flow Graphs targeted at FPGAs, the effect of interconnect resources such as multiplexers must be considered since they contribute significantly to the area and switching power. We propose a binding framework for behavioral synthesis of Data Flow Graphs (DFGs) onto FPGA targets with power reduction as the main criterion. The technique uses a multi-objective GA, NSGA II for design space exploration to identify schedules that have the potential to yield low-power bindings from a population of non-dominated solutions. A greedy constructive binding technique reported in the literature is adapted for interconnect minimization. The binding is further subjected to a perturbation process by altering the register and multiplexer assignments. Results obtained on standard DFG benchmarks indicate that our technique yields better power aware bindings than the constructive binding approach with little or no area overhead. |
References | | | Cited By |
Web of Science® Times Cited: 4 [View]
View record in Web of Science® [View]
View Related Records® [View]
Updated today
SCOPUS® Times Cited: 4
View record in SCOPUS® [Free preview]
View citations in SCOPUS® [Free preview]
[1] High-Level Synthesis through metaheuristics and LUTs optimization in FPGA devices, Reyes Fernández de Bulnes, Darian, Dibene Simental, Juan Carlos, Maldonado, Yazmin, Trujillo, Leonardo, AI Communications, ISSN 1875-8452, Issue 2, Volume 30, 2017.
Digital Object Identifier: 10.3233/AIC-170727 [CrossRef]
[2] Design Time Temperature Reduction in Mixed Polarity Dual Reed-Muller Network: a NSGA-II Based Approach, DAS, A., PRADHAN, S. N., Advances in Electrical and Computer Engineering, ISSN 1582-7445, Issue 1, Volume 20, 2020.
Digital Object Identifier: 10.4316/AECE.2020.01013 [CrossRef] [Full text]
Disclaimer: All information displayed above was retrieved by using remote connections to respective databases. For the best user experience, we update all data by using background processes, and use caches in order to reduce the load on the servers we retrieve the information from. As we have no control on the availability of the database servers and sometimes the Internet connectivity may be affected, we do not guarantee the information is correct or complete. For the most accurate data, please always consult the database sites directly. Some external links require authentication or an institutional subscription.
Web of Science® is a registered trademark of Clarivate Analytics, Scopus® is a registered trademark of Elsevier B.V., other product names, company names, brand names, trademarks and logos are the property of their respective owners.
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania
All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.
Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.
Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.