1/2024 - 2 |
A New Parametric DFT-Based OFDM Transceiver for Intrinsic Wireless Communication EncryptionCHERGUI, L. , BOUGUEZEL, S. |
Extra paper information in |
Click to see author's profile in SCOPUS, IEEE Xplore, Web of Science |
Download PDF (1,543 KB) | Citation | Downloads: 931 | Views: 1,003 |
Author keywords
communication systems security, discrete Fourier transform, encryption, OFDM, wireless communication
References keywords
ofdm(20), communications(18), systems(10), time(6), physical(6), layer(6), estimation(6), digital(6), channel(6), signal(5)
Blue keywords are present in both the references section and the paper title.
About this article
Date of Publication: 2024-02-29
Volume 24, Issue 1, Year 2024, On page(s): 15 - 22
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2024.01002
Web of Science Accession Number: 001178765900002
SCOPUS ID: 85189662009
Abstract
In this paper, we propose a parametric OFDM transceiver for wireless communication encryption. One of the major contributions of this work is the intrinsic encryption nature of the proposed system, since it is a completely new idea and philosophically different from the concept of existing secured OFDM systems requiring separate encryption blocks. The main idea behind the proposed system is the appropriate use of the parametric discrete Fourier transform (DFT-alpha) and its inverse IDFT-alpha, where alpha is randomly obtained from [-2pi, 0], to implement the OFDM system and at the same time inherently encrypt the communications. Thus, the resulting (IDFT-alpha/DFT-alpha)-based OFDM transceiver, which has a performance similar to that of the conventional IDFT/DFT-based OFDM transceiver, is applied and implemented in the IEEE 802.11a WIFI system framework OFDM for communication encrypting. Moreover, using BER and SNR, we experimentally determine the appropriate intervals of the possible values of alpha for perfect encryption in a flat fading channel assumed for optimal testing environment. We also examine and assess the effects of DFT-alpha on the transformation of the constellation pattern of the transmitted signal to prove the validity of the obtained intervals for different modulation schemes such as BPSK, QPSK, 16QAM, and 64QAM. |
References | | | Cited By |
Web of Science® Times Cited: 0
View record in Web of Science® [View]
View Related Records® [View]
Updated today
SCOPUS® Times Cited: 0
View record in SCOPUS® [Free preview]
There are no citing papers in the CrossRef Cited-by Linking system.
Disclaimer: All information displayed above was retrieved by using remote connections to respective databases. For the best user experience, we update all data by using background processes, and use caches in order to reduce the load on the servers we retrieve the information from. As we have no control on the availability of the database servers and sometimes the Internet connectivity may be affected, we do not guarantee the information is correct or complete. For the most accurate data, please always consult the database sites directly. Some external links require authentication or an institutional subscription.
Web of Science® is a registered trademark of Clarivate Analytics, Scopus® is a registered trademark of Elsevier B.V., other product names, company names, brand names, trademarks and logos are the property of their respective owners.
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania
All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.
Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.
Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.