Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.700
JCR 5-Year IF: 0.700
SCOPUS CiteScore: 1.8
Issues per year: 4
Current issue: Nov 2024
Next issue: Feb 2025
Avg review time: 54 days
Avg accept to publ: 60 days
APC: 300 EUR


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

3,016,464 unique visits
1,170,172 downloads
Since November 1, 2009



Robots online now
Sogou
Googlebot


SCOPUS CiteScore

SCOPUS CiteScore


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 24 (2024)
 
     »   Issue 4 / 2024
 
     »   Issue 3 / 2024
 
     »   Issue 2 / 2024
 
     »   Issue 1 / 2024
 
 
 Volume 23 (2023)
 
     »   Issue 4 / 2023
 
     »   Issue 3 / 2023
 
     »   Issue 2 / 2023
 
     »   Issue 1 / 2023
 
 
 Volume 22 (2022)
 
     »   Issue 4 / 2022
 
     »   Issue 3 / 2022
 
     »   Issue 2 / 2022
 
     »   Issue 1 / 2022
 
 
 Volume 21 (2021)
 
     »   Issue 4 / 2021
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
  View all issues  








LATEST NEWS

2024-Jun-20
Clarivate Analytics published the InCites Journal Citations Report for 2023. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.700 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.600.

2023-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2022. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.800 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 1.000.

2023-Jun-05
SCOPUS published the CiteScore for 2022, computed by using an improved methodology, counting the citations received in 2019-2022 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2022 is 2.0. For "General Computer Science" we rank #134/233 and for "Electrical and Electronic Engineering" we rank #478/738.

2022-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2021. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.825 (0.722 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.752.

2022-Jun-16
SCOPUS published the CiteScore for 2021, computed by using an improved methodology, counting the citations received in 2018-2021 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2021 is 2.5, the same as for 2020 but better than all our previous results.

Read More »


    
 

  2/2014 - 2

 HIGH-IMPACT PAPER 

Controller Architecture Design for MMC-HVDC

ZHANG, B. See more information about ZHANG, B. on SCOPUS See more information about ZHANG, B. on IEEExplore See more information about ZHANG, B. on Web of Science, ZHAO, C. See more information about  ZHAO, C. on SCOPUS See more information about  ZHAO, C. on SCOPUS See more information about ZHAO, C. on Web of Science, GUO, C. See more information about  GUO, C. on SCOPUS See more information about  GUO, C. on SCOPUS See more information about GUO, C. on Web of Science, XIAO, X. See more information about  XIAO, X. on SCOPUS See more information about  XIAO, X. on SCOPUS See more information about XIAO, X. on Web of Science, ZHOU, L. See more information about ZHOU, L. on SCOPUS See more information about ZHOU, L. on SCOPUS See more information about ZHOU, L. on Web of Science
 
Extra paper information in View the paper record and citations in Google Scholar View the paper record and similar papers in Microsoft Bing View the paper record and similar papers in Semantic Scholar the AI-powered research tool
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,359 KB) | Citation | Downloads: 1,660 | Views: 4,649

Author keywords
physical simulation system, modular multilevel converter, pole controller & protection system, valve based controller, sub-module controller, steady-state test platform

References keywords
power(18), hvdc(11), multilevel(9), modular(9), converter(7), yang(6), voltage(6), energy(6), electronics(6), system(5)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2014-05-31
Volume 14, Issue 2, Year 2014, On page(s): 9 - 16
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2014.02002
Web of Science Accession Number: 000340868100002
SCOPUS ID: 84901832748

Abstract
Quick view
Full text preview
Compared with high voltage direct current (HVDC), the primary and secondary systems of modular multilevel converter based HVDC (MMC-HVDC) are complicated. And the characteristics of the control system determine the properties of the MMC-HVDC system to a certain extent. This paper investigates the design of control architecture. First, the structure and parameters of the 21-level MMC-HVDC are designed. Second, the framework of the control system is studied in details and a complete control system is established. The communication mode and content are built between each layer, and the control system program is developed and debugged. Then The steady state test platform of the sub-module and the relevant control system are designed. Finally, the steady-state tests and the system test of the physical MMC-HVDC simulation system are conducted, which prove that the SMC can control the sub-module (SM) efficiently, and the control system could realize efficient start and stop of the physical system. Meanwhile, the capacitor voltage balance between the sub-modules and the basic fault protection and control of the DC voltage and power are verified to be effective.


References | Cited By

Cited-By Clarivate Web of Science

Web of Science® Times Cited: 7 [View]
View record in Web of Science® [View]
View Related Records® [View]

Updated today


Cited-By SCOPUS

SCOPUS® Times Cited: 8
View record in SCOPUS®
[Free preview]
View citations in SCOPUS® [Free preview]

Updated today

Cited-By CrossRef

[1] New Boost-Type PFC MF-Vienna PWM Rectifiers with Multiplied Switching Frequency, FLORICAU, D., TUDORACHE, T., KREINDLER, L., Advances in Electrical and Computer Engineering, ISSN 1582-7445, Issue 4, Volume 15, 2015.
Digital Object Identifier: 10.4316/AECE.2015.04011
[CrossRef] [Full text]

[2] A Synchronous Distributed Communication and Control System for SiC-Based Modular Impedance Measurement Units, Rong, Yu, Wang, Jun, Shen, Zhiyu, Zhou, Sizhan, Wen, Bo, Burgos, Rolando, Boroyevich, Dushan, Verhulst, Jacob, Belkhayat, Mohamed, IEEE Journal of Emerging and Selected Topics in Power Electronics, ISSN 2168-6777, Issue 3, Volume 10, 2022.
Digital Object Identifier: 10.1109/JESTPE.2021.3120423
[CrossRef]

[3] Non-Linear Control for Variable Resistive Bridge Type Fault Current Limiter in AC-DC Systems, Alam, Md Shafiul, Abido, Mohammad Ali Yousef, Hussein, Alaa El-Din, Energies, ISSN 1996-1073, Issue 4, Volume 12, 2019.
Digital Object Identifier: 10.3390/en12040713
[CrossRef]

[4] Decentralized Control Method for Modular Multilevel Converters, Xia, Bing, Li, Yaohua, Li, Zixin, Konstantinou, Georgios, Xu, Fei, Gao, Fanqiang, Wang, Ping, IEEE Transactions on Power Electronics, ISSN 0885-8993, Issue 6, Volume 34, 2019.
Digital Object Identifier: 10.1109/TPEL.2018.2866258
[CrossRef]

[5] Overview and Assessment of HVDC Current Applications and Future Trends, Stan, Andrei, CostinaČ™, Sorina, Ion, Georgiana, Energies, ISSN 1996-1073, Issue 3, Volume 15, 2022.
Digital Object Identifier: 10.3390/en15031193
[CrossRef]

[6] A Synchronous Distributed Control and Communication Network for SiC-Based Scalable Impedance Measurement Unit, Rong, Yu, Wang, Jun, Shen, Zhiyu, Zhou, Sizhan, Wen, Bo, Burgos, Rolando, Boroyevich, Dushan, 2020 IEEE Energy Conversion Congress and Exposition (ECCE), ISBN 978-1-7281-5826-6, 2020.
Digital Object Identifier: 10.1109/ECCE44975.2020.9236365
[CrossRef]

[7] A Reconfigurable, Modular and Scalable Impedance Measurement Unit with SiC MOSFET-Based Power Electronics Building Blocks, Zhou, Sizhan, Wen, Bo, Rong, Yu, Mitrovic, Vladimir, Burgos, Rolando, Verhulst, Jake, Belkhayat, Mohamed, Boroyevich, Dushan, 2021 IEEE Applied Power Electronics Conference and Exposition (APEC), ISBN 978-1-7281-8949-9, 2021.
Digital Object Identifier: 10.1109/APEC42165.2021.9487098
[CrossRef]

Updated today

Disclaimer: All information displayed above was retrieved by using remote connections to respective databases. For the best user experience, we update all data by using background processes, and use caches in order to reduce the load on the servers we retrieve the information from. As we have no control on the availability of the database servers and sometimes the Internet connectivity may be affected, we do not guarantee the information is correct or complete. For the most accurate data, please always consult the database sites directly. Some external links require authentication or an institutional subscription.

Web of Science® is a registered trademark of Clarivate Analytics, Scopus® is a registered trademark of Elsevier B.V., other product names, company names, brand names, trademarks and logos are the property of their respective owners.


Copyright ©2001-2024
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: 


DNS Made Easy