Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.700
JCR 5-Year IF: 0.700
SCOPUS CiteScore: 1.8
Issues per year: 4
Current issue: Nov 2024
Next issue: Feb 2025
Avg review time: 57 days
Avg accept to publ: 60 days
APC: 300 EUR


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

3,064,946 unique visits
1,190,679 downloads
Since November 1, 2009



Robots online now
AhrefsBot
Googlebot
bingbot
SemrushBot


SCOPUS CiteScore

SCOPUS CiteScore


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 24 (2024)
 
     »   Issue 4 / 2024
 
     »   Issue 3 / 2024
 
     »   Issue 2 / 2024
 
     »   Issue 1 / 2024
 
 
 Volume 23 (2023)
 
     »   Issue 4 / 2023
 
     »   Issue 3 / 2023
 
     »   Issue 2 / 2023
 
     »   Issue 1 / 2023
 
 
 Volume 22 (2022)
 
     »   Issue 4 / 2022
 
     »   Issue 3 / 2022
 
     »   Issue 2 / 2022
 
     »   Issue 1 / 2022
 
 
 Volume 21 (2021)
 
     »   Issue 4 / 2021
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
  View all issues  


FEATURED ARTICLE

A Proposed Signal Reconstruction Algorithm over Bandlimited Channels for Wireless Communications, ASHOUR, A., KHALAF, A., HUSSEIN, A., HAMED, H., RAMADAN, A.
Issue 1/2023

AbstractPlus






LATEST NEWS

2024-Jun-20
Clarivate Analytics published the InCites Journal Citations Report for 2023. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.700 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.600.

2023-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2022. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.800 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 1.000.

2023-Jun-05
SCOPUS published the CiteScore for 2022, computed by using an improved methodology, counting the citations received in 2019-2022 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2022 is 2.0. For "General Computer Science" we rank #134/233 and for "Electrical and Electronic Engineering" we rank #478/738.

2022-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2021. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.825 (0.722 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.752.

2022-Jun-16
SCOPUS published the CiteScore for 2021, computed by using an improved methodology, counting the citations received in 2018-2021 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2021 is 2.5, the same as for 2020 but better than all our previous results.

Read More »


    
 

  3/2017 - 2

 HIGHLY CITED PAPER 

Vacancy Induced Energy Band Gap Changes of Semiconducting Zigzag Single Walled Carbon Nanotubes

DERELI, G. See more information about DERELI, G. on SCOPUS See more information about DERELI, G. on IEEExplore See more information about DERELI, G. on Web of Science, EYECIOGLU, O. See more information about  EYECIOGLU, O. on SCOPUS See more information about  EYECIOGLU, O. on SCOPUS See more information about EYECIOGLU, O. on Web of Science, MISIRLIOGLU, B. S. See more information about MISIRLIOGLU, B. S. on SCOPUS See more information about MISIRLIOGLU, B. S. on SCOPUS See more information about MISIRLIOGLU, B. S. on Web of Science
 
Extra paper information in View the paper record and citations in Google Scholar View the paper record and similar papers in Microsoft Bing View the paper record and similar papers in Semantic Scholar the AI-powered research tool
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (4,420 KB) | Citation | Downloads: 1,152 | Views: 3,235

Author keywords
single-walled carbon nanotubes, order N tight-binding molecular dynamics, vacancy, energy band gap, electronic properties

References keywords
carbon(29), nanotubes(21), single(11), tight(10), binding(10), walled(8), properties(8), molecular(8), electronic(8), dynamics(7)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2017-08-31
Volume 17, Issue 3, Year 2017, On page(s): 11 - 18
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2017.03002
Web of Science Accession Number: 000410369500002
SCOPUS ID: 85028550042

Abstract
Quick view
Full text preview
In this work, we have examined how the multi-vacancy defects induced in the horizontal direction change the energetics and the electronic structure of semiconducting Single-Walled Carbon Nanotubes (SWCNTs). The electronic structure of SWCNTs is computed for each deformed configuration by means of real space, Order(N) Tight Binding Molecular Dynamic (O(N) TBMD) simulations. Energy band gap is obtained in real space through the behavior of electronic density of states (eDOS) near the Fermi level. Vacancies can effectively change the energetics and hence the electronic structure of SWCNTs. In this study, we choose three different kinds of semiconducting zigzag SWCNTs and determine the band gap modifications. We have selected (12,0), (13,0) and (14,0) zigzag SWCNTs according to n (mod 3) = 0, n (mod 3) = 1 and n (mod 3) = 2 classification. (12,0) SWCNT is metallic in its pristine state. The application of vacancies opens the electronic band gap and it goes up to 0.13 eV for a di-vacancy defected tube. On the other hand (13,0) and (14,0) SWCNTs are semiconductors with energy band gap values of 0.44 eV and 0.55 eV in their pristine state, respectively. Their energy band gap values decrease to 0.07 eV and 0.09 eV when mono-vacancy defects are induced in their horizontal directions. Then the di-vacancy defects open the band gap again. So in both cases, the semiconducting-metallic - semiconducting transitions occur. It is also shown that the band gap modification exhibits irreversible characteristics, which means that band gap values of the nanotubes do not reach their pristine values with increasing number of vacancies.


References | Cited By

Cited-By Clarivate Web of Science

Web of Science® Times Cited: 3 [View]
View record in Web of Science® [View]
View Related Records® [View]

Updated today


Cited-By SCOPUS

SCOPUS® Times Cited: 5
View record in SCOPUS®
[Free preview]
View citations in SCOPUS® [Free preview]

Updated today

Cited-By CrossRef

[1] Band-gap tuning of graphene by Mg doping and adsorption of Br and Be on impurity: A DFT study, Tayyab, Muhammad, Hussain, Akhtar, Asif, Qurat ul Ain, Adil, Waqar, Computational Condensed Matter, ISSN 2352-2143, Issue , 2020.
Digital Object Identifier: 10.1016/j.cocom.2020.e00469
[CrossRef]

[2] Band-gap engineering of graphene by Al doping and adsorption of Be and Br on impurity: A computational study, Tayyab, Muhammad, Hussain, Akhtar, Adil, Waqar, Nabi, Shafqat, Asif, Qurat ul Ain, Computational Condensed Matter, ISSN 2352-2143, Issue , 2020.
Digital Object Identifier: 10.1016/j.cocom.2020.e00463
[CrossRef]

[3] Work function, carrier type, and conductivity of nitrogen-doped single-walled carbon nanotube catalysts prepared by annealing via defluorination and efficient oxygen reduction reaction, Yokoyama, Koji, Sato, Yoshinori, Yamamoto, Masashi, Nishida, Tetsuo, Motomiya, Kenichi, Tohji, Kazuyuki, Sato, Yoshinori, Carbon, ISSN 0008-6223, Issue , 2019.
Digital Object Identifier: 10.1016/j.carbon.2018.10.052
[CrossRef]

[4] Identification of vacancy defects in carbon nanotubes using vibration analysis and machine learning, Singh, Sneha, Junaid, Zaid Bin, Vyas, Vinay, Kalyanwat, Teekam Singh, Rana, Subhram Subhrajyoti, Carbon Trends, ISSN 2667-0569, Issue , 2021.
Digital Object Identifier: 10.1016/j.cartre.2021.100091
[CrossRef]

[5] Controllable synthesis of defective carbon nanotubes/Sc2Si2O7 ceramic with adjustable dielectric properties for broadband high-performance microwave absorption, Wei, Hanjun, Yin, Xiaowei, Li, Xin, Li, Minghang, Dang, Xiaolin, Zhang, Litong, Cheng, Laifei, Carbon, ISSN 0008-6223, Issue , 2019.
Digital Object Identifier: 10.1016/j.carbon.2019.03.008
[CrossRef]

Updated today

Disclaimer: All information displayed above was retrieved by using remote connections to respective databases. For the best user experience, we update all data by using background processes, and use caches in order to reduce the load on the servers we retrieve the information from. As we have no control on the availability of the database servers and sometimes the Internet connectivity may be affected, we do not guarantee the information is correct or complete. For the most accurate data, please always consult the database sites directly. Some external links require authentication or an institutional subscription.

Web of Science® is a registered trademark of Clarivate Analytics, Scopus® is a registered trademark of Elsevier B.V., other product names, company names, brand names, trademarks and logos are the property of their respective owners.


Copyright ©2001-2024
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: 


DNS Made Easy