4/2024 - 2 |
An Aerial Target Localization Method Using TOA and AOA Measurements with GEO-UAV Bistatic ConfigurationJIAO, X. , ZHANG, J. , CHEN, J. , JIANG, L. , WANG, Y. , LI, Y. , WANG, W. |
Extra paper information in |
Click to see author's profile in SCOPUS, IEEE Xplore, Web of Science |
Download PDF (1,128 KB) | Citation | Downloads: 35 | Views: 46 |
Author keywords
Aerial target, localization, angle of arrival, measurements, time of arrival
References keywords
localization(29), radar(13), technology(9), signal(8), processing(7), moving(7), systems(6), sensing(6), remote(6), passive(6)
Blue keywords are present in both the references section and the paper title.
About this article
Date of Publication: 2024-11-30
Volume 24, Issue 4, Year 2024, On page(s): 19 - 26
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2024.04002
Abstract
Based on multi-station spatial diversity capability, GEO-UAV distributed radar could achieve high-precision aerial target localization with the single-transmitting and multiple-receiving configuration. However, the actual observation area can hardly be covered by several receiving stations simultaneously. Thus, it is necessary to explore a novel target localization method under a single receiving station condition. In this manuscript, an aerial target localization method with GEO-UAV bistatic configuration is presented, where O and AOA measurements are employed. Firstly, measurement models, including bistatic range-delay, pitching AOA, and azimuth AOA, are established using the spatial geometric relationship between the bistatic radar and the target. Then, the receiving range can be estimated using digital beamforming technology based on the receiving array antenna, where the antenna beam coverage information and the prior target altitude information are combined. Finally, the three-dimensional target localization is skillfully derived according to the bistatic configuration, and thus to avoid the parameter unrecognizable problem caused by insufficient degrees of freedom. The proposed algorithm fully exploits the intrinsic correlation characteristics between the measurement information and the bistatic configuration, which provides an effective way for aerial target localization. Simulation results verify the effectiveness of the proposed algorithm. |
References | | | Cited By |
We were unable to retrieve information about this paper in Web of Science®.
Request type: 2
Message: [No Result Found]
Updated 2 days, 6 hours ago
We were unable to retrieve information about this paper in SCOPUS®.
Message: [Returned results: 0]
There are no citing papers in the CrossRef Cited-by Linking system.
Disclaimer: All information displayed above was retrieved by using remote connections to respective databases. For the best user experience, we update all data by using background processes, and use caches in order to reduce the load on the servers we retrieve the information from. As we have no control on the availability of the database servers and sometimes the Internet connectivity may be affected, we do not guarantee the information is correct or complete. For the most accurate data, please always consult the database sites directly. Some external links require authentication or an institutional subscription.
Web of Science® is a registered trademark of Clarivate Analytics, Scopus® is a registered trademark of Elsevier B.V., other product names, company names, brand names, trademarks and logos are the property of their respective owners.
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania
All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.
Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.
Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.