Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.700
JCR 5-Year IF: 0.700
SCOPUS CiteScore: 1.8
Issues per year: 4
Current issue: Aug 2024
Next issue: Nov 2024
Avg review time: 59 days
Avg accept to publ: 60 days
APC: 300 EUR


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,984,202 unique visits
1,157,820 downloads
Since November 1, 2009



Robots online now
bingbot
Googlebot


SCOPUS CiteScore

SCOPUS CiteScore


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 24 (2024)
 
     »   Issue 3 / 2024
 
     »   Issue 2 / 2024
 
     »   Issue 1 / 2024
 
 
 Volume 23 (2023)
 
     »   Issue 4 / 2023
 
     »   Issue 3 / 2023
 
     »   Issue 2 / 2023
 
     »   Issue 1 / 2023
 
 
 Volume 22 (2022)
 
     »   Issue 4 / 2022
 
     »   Issue 3 / 2022
 
     »   Issue 2 / 2022
 
     »   Issue 1 / 2022
 
 
 Volume 21 (2021)
 
     »   Issue 4 / 2021
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
  View all issues  




SAMPLE ARTICLES

A Novel Control Approach Utilizing Neural Network for Efficient Microgrid Operation with Solar PV and Energy Storage Systems, JABBARI, A., KHAN, H., MUSHTAQ, D., SARWAR, M., DURAIBI, S., ALMALKI, K. J., AHMED, W., SIDDIQUI, A. S.
Issue 3/2024

AbstractPlus

Triple-feature-based Particle Filter Algorithm Used in Vehicle Tracking Applications, ABDULLA, A. A., GRAOVAC, S., PAPIC, V., KOVACEVIC., B.
Issue 2/2021

AbstractPlus

On Board Neuro Fuzzy Inverse Optimal Control for Type 1 Diabetes Mellitus Treatment: In-Silico Testing, RIOS, Y., GARCIA-RODRIGUEZ, J., SANCHEZ, E., ALANIS, A., RUIZ-VELAZQUEZ, E., PARDO-GARCIA, A.
Issue 3/2022

AbstractPlus

Novel Power Smoothing Technique for a Hybrid AC-DC Microgrid Operating with Multiple Alternative Energy Sources, NEMPU, P. B., SABHAHIT, J. N., GAONKAR, D. N., RAO, V. S.
Issue 2/2021

AbstractPlus

Robust Human Detection Using Histogram Oriented Gradient and Aggregate Channel Features, SONMEZOCAK, T.
Issue 2/2023

AbstractPlus

Increasing the Performance of High-Speed Solid Rotor Induction Motor by Plunge Type Electrical Discharge Machining, GULBAHCE, M. O., LORDOGLU, A., KOCABAS, D. A.
Issue 1/2023

AbstractPlus




LATEST NEWS

2024-Jun-20
Clarivate Analytics published the InCites Journal Citations Report for 2023. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.700 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.600.

2023-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2022. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.800 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 1.000.

2023-Jun-05
SCOPUS published the CiteScore for 2022, computed by using an improved methodology, counting the citations received in 2019-2022 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2022 is 2.0. For "General Computer Science" we rank #134/233 and for "Electrical and Electronic Engineering" we rank #478/738.

2022-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2021. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.825 (0.722 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.752.

2022-Jun-16
SCOPUS published the CiteScore for 2021, computed by using an improved methodology, counting the citations received in 2018-2021 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2021 is 2.5, the same as for 2020 but better than all our previous results.

Read More »


    
 

  3/2023 - 3

New Results on the IC_AOMDV Protocol for Vehicular Ad Hoc Networks in Urban Areas

de ASSIS, D. R. See more information about de ASSIS, D. R. on SCOPUS See more information about de ASSIS, D. R. on IEEExplore See more information about de ASSIS, D. R. on Web of Science, WILLE, E. C. G. See more information about  WILLE, E. C. G. on SCOPUS See more information about  WILLE, E. C. G. on SCOPUS See more information about WILLE, E. C. G. on Web of Science, ALVES JUNIOR, J. See more information about ALVES JUNIOR, J. on SCOPUS See more information about ALVES JUNIOR, J. on SCOPUS See more information about ALVES JUNIOR, J. on Web of Science
 
Extra paper information in View the paper record and citations in Google Scholar View the paper record and similar papers in Microsoft Bing View the paper record and similar papers in Semantic Scholar the AI-powered research tool
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,406 KB) | Citation | Downloads: 519 | Views: 907

Author keywords
computer simulation, intelligent transportation systems, mobile communication, performance analysis, routing protocols

References keywords
networks(16), routing(12), vehicular(11), communications(7), vanets(6), vanet(6), protocol(6), mobile(6), aodv(6), technology(5)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2023-08-31
Volume 23, Issue 3, Year 2023, On page(s): 21 - 28
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2023.03003
Web of Science Accession Number: 001062641900003
SCOPUS ID: 85172330000

Abstract
Quick view
Full text preview
A Vehicular Ad Hoc Network (VANET) is formed by a group of mobile and wireless nodes (cars, buses, trucks, etc), which can dynamically form a network to exchange information without the necessity of using a fixed network infrastructure. The performance of these networks is entirely dependent on the quality of the established routes. Several factors can influence route quality and network connectivity, for instance: speed, density, movement direction, and radio transmission range. Therefore, the design of VANET routing protocols has become an intriguing challengeable research topic. The newly introduced Improved Connectivity Ad Hoc On-Demand Multipath Distance Vector (IC_AOMDV) protocol uses vehicular density and movement direction (combined with the number of hops) to establish more stable and beneficial routes. Simulation results proved that IC_AOMDV can deliver good performance on the metrics packet delivery rate, average end-to-end delay and overhead, when compared to other well-known protocols. This paper brings new results on the statistical behavior of each parameter used in the IC_AOMDV route selection process and it shows that the most beneficial routes are only 20% to 30% longer when compared to those employed in the standard AOMDV protocol.


References | Cited By

Cited-By Clarivate Web of Science

Web of Science® Times Cited: 0
View record in Web of Science® [View]
View Related Records® [View]

Updated today


Cited-By SCOPUS

SCOPUS® Times Cited: 0
View record in SCOPUS®
[Free preview]


Updated today

Cited-By CrossRef

There are no citing papers in the CrossRef Cited-by Linking system.

Updated today

Disclaimer: All information displayed above was retrieved by using remote connections to respective databases. For the best user experience, we update all data by using background processes, and use caches in order to reduce the load on the servers we retrieve the information from. As we have no control on the availability of the database servers and sometimes the Internet connectivity may be affected, we do not guarantee the information is correct or complete. For the most accurate data, please always consult the database sites directly. Some external links require authentication or an institutional subscription.

Web of Science® is a registered trademark of Clarivate Analytics, Scopus® is a registered trademark of Elsevier B.V., other product names, company names, brand names, trademarks and logos are the property of their respective owners.


Copyright ©2001-2024
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: 


DNS Made Easy