1/2024 - 5 |
An Improved Sine Cosine Algorithm for the Day-ahead Microgrid Management in the Presence of Electric VehiclesQIU, C. |
Extra paper information in |
Click to see author's profile in SCOPUS, IEEE Xplore, Web of Science |
Download PDF (1,401 KB) | Citation | Downloads: 767 | Views: 734 |
Author keywords
energy management, microgrids, optimization methods, renewable energy sources, scheduling
References keywords
energy(31), electric(17), algorithm(15), microgrid(13), optimization(12), vehicles(11), renewable(11), management(11), systems(10), scheduling(10)
Blue keywords are present in both the references section and the paper title.
About this article
Date of Publication: 2024-02-29
Volume 24, Issue 1, Year 2024, On page(s): 41 - 50
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2024.01005
Web of Science Accession Number: 001178765900009
SCOPUS ID: 85189452589
Abstract
Microgrid (MG) is capable of accommodating renewable energy sources (RESs) with high flexibility. With the rapid development of MGs, plug-in hybrid electric vehicles (PHEVs) are gaining increasing attention since they can alleviate pollution and reduce energy consumption. The appearance of PHEVs would exacerbate the power supply shortages and bring new challenges to the power system. This paper develops an effective day-ahead optimal scheduling of a MG, taking into account RESs, storage devices and PHEVs. The Monte Carlo simulation is utilized to model the uncertainties of PHEVs. A smart charging/discharging strategy incorporating the V2G technique is proposed to smooth the demand curve and reduce the operational costs. To handle the MG scheduling problem in the presence of PHEVs, an improved sine cosine algorithm with simulated annealing based local search operator and chaotic opposition learning strategy (CSCASA) is proposed to minimize the total costs. The proposed algorithm can keep a better balance between global and local search abilities. CSCASA is first validated on some benchmark problems. Then, CSCASA is employed to generate optimal schedule of a grid-connected MG with PHEVs. The experimental results demonstrate the superior performance of CSCASA in the optimal MG scheduling problem with and without PHEVs. |
References | | | Cited By |
Web of Science® Times Cited: 0
View record in Web of Science® [View]
View Related Records® [View]
Updated today
SCOPUS® Times Cited: 0
View record in SCOPUS® [Free preview]
There are no citing papers in the CrossRef Cited-by Linking system.
Disclaimer: All information displayed above was retrieved by using remote connections to respective databases. For the best user experience, we update all data by using background processes, and use caches in order to reduce the load on the servers we retrieve the information from. As we have no control on the availability of the database servers and sometimes the Internet connectivity may be affected, we do not guarantee the information is correct or complete. For the most accurate data, please always consult the database sites directly. Some external links require authentication or an institutional subscription.
Web of Science® is a registered trademark of Clarivate Analytics, Scopus® is a registered trademark of Elsevier B.V., other product names, company names, brand names, trademarks and logos are the property of their respective owners.
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania
All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.
Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.
Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.