Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.700
JCR 5-Year IF: 0.700
SCOPUS CiteScore: 1.8
Issues per year: 4
Current issue: Aug 2024
Next issue: Nov 2024
Avg review time: 59 days
Avg accept to publ: 60 days
APC: 300 EUR


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,983,994 unique visits
1,157,766 downloads
Since November 1, 2009



Robots online now
bingbot


SCOPUS CiteScore

SCOPUS CiteScore


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 24 (2024)
 
     »   Issue 3 / 2024
 
     »   Issue 2 / 2024
 
     »   Issue 1 / 2024
 
 
 Volume 23 (2023)
 
     »   Issue 4 / 2023
 
     »   Issue 3 / 2023
 
     »   Issue 2 / 2023
 
     »   Issue 1 / 2023
 
 
 Volume 22 (2022)
 
     »   Issue 4 / 2022
 
     »   Issue 3 / 2022
 
     »   Issue 2 / 2022
 
     »   Issue 1 / 2022
 
 
 Volume 21 (2021)
 
     »   Issue 4 / 2021
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
  View all issues  








LATEST NEWS

2024-Jun-20
Clarivate Analytics published the InCites Journal Citations Report for 2023. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.700 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.600.

2023-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2022. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.800 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 1.000.

2023-Jun-05
SCOPUS published the CiteScore for 2022, computed by using an improved methodology, counting the citations received in 2019-2022 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2022 is 2.0. For "General Computer Science" we rank #134/233 and for "Electrical and Electronic Engineering" we rank #478/738.

2022-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2021. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.825 (0.722 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.752.

2022-Jun-16
SCOPUS published the CiteScore for 2021, computed by using an improved methodology, counting the citations received in 2018-2021 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2021 is 2.5, the same as for 2020 but better than all our previous results.

Read More »


    
 

  2/2020 - 5

 HIGH-IMPACT PAPER 

Deep Learning Based Prediction Model for the Next Purchase

UTKU, A. See more information about UTKU, A. on SCOPUS See more information about UTKU, A. on IEEExplore See more information about UTKU, A. on Web of Science, AKCAYOL, M. A. See more information about AKCAYOL, M. A. on SCOPUS See more information about AKCAYOL, M. A. on SCOPUS See more information about AKCAYOL, M. A. on Web of Science
 
Extra paper information in View the paper record and citations in Google Scholar View the paper record and similar papers in Microsoft Bing View the paper record and similar papers in Semantic Scholar the AI-powered research tool
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,382 KB) | Citation | Downloads: 1,965 | Views: 1,859

Author keywords
time series analysis, deep learning, prediction, e-commerce

References keywords
series(26), time(25), neural(19), forecasting(16), networks(12), learning(11), prediction(9), arima(9), network(8), deep(8)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2020-05-31
Volume 20, Issue 2, Year 2020, On page(s): 35 - 44
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2020.02005
Web of Science Accession Number: 000537943500005
SCOPUS ID: 85087459081

Abstract
Quick view
Full text preview
Time series represent the consecutive measurements taken at equally spaced time intervals. Time series prediction uses the information in a time series to predict future values. The future value prediction is important for many business and administrative decision makers especially in e-commerce. To promote business, sales prediction and sensing of future consumer behavior can help business decision makers in marketing campaigns, budget and resource planning. In this study, deep learning based a new prediction model has been developed for the time of next purchase in e-commerce. The proposed model has been extensively tested and compared with RF, ARIMA, CNN and MLP using a retail market dataset. The experimental results show that the developed model has been more successful than RF, ARIMA, CNN and MLP to predict the time of the next purchase.


References | Cited By

Cited-By Clarivate Web of Science

Web of Science® Times Cited: 5 [View]
View record in Web of Science® [View]
View Related Records® [View]

Updated today


Cited-By SCOPUS

SCOPUS® Times Cited: 10
View record in SCOPUS®
[Free preview]
View citations in SCOPUS® [Free preview]

Updated today

Cited-By CrossRef

[1] A Brief Survey of Machine Learning and Deep Learning Techniques for E-Commerce Research, Zhang, Xue, Guo, Fusen, Chen, Tao, Pan, Lei, Beliakov, Gleb, Wu, Jianzhang, Journal of Theoretical and Applied Electronic Commerce Research, ISSN 0718-1876, Issue 4, Volume 18, 2023.
Digital Object Identifier: 10.3390/jtaer18040110
[CrossRef]

[2] A Hybrid Deep Learning-Metaheuristic Model for Diagnosis of Diabetic Retinopathy, GÜRCAN, Ömer Faruk, ATICI, Uğur, BEYCA, Ömer Faruk, Gazi University Journal of Science, ISSN 2147-1762, Issue 2, Volume 36, 2023.
Digital Object Identifier: 10.35378/gujs.919572
[CrossRef]

[3] Artificial intelligence in customer retention: a bibliometric analysis and future research framework, Singh, Chetanya, Dash, Manoj Kumar, Sahu, Rajendra, Kumar, Anil, Kybernetes, ISSN 0368-492X, Issue 11, Volume 53, 2024.
Digital Object Identifier: 10.1108/K-02-2023-0245
[CrossRef]

[4] Transformer-Based Model for Predicting Customers’ Next Purchase Day in e-Commerce, Grigoraș, Alexandru, Leon, Florin, Computation, ISSN 2079-3197, Issue 11, Volume 11, 2023.
Digital Object Identifier: 10.3390/computation11110210
[CrossRef]

[5] An Empirical Study on Software Test Effort Estimation for Defense Projects, Cibir, Esra, Ayyildiz, Tulin Ercelebi, IEEE Access, ISSN 2169-3536, Issue , 2022.
Digital Object Identifier: 10.1109/ACCESS.2022.3172326
[CrossRef]

[6] Machine Learning-based Prediction Mechanism of Repeated Purchase Behavior of E-commerce Customers, Li, Shuyuan, 2024 IEEE 4th International Conference on Electronic Communications, Internet of Things and Big Data (ICEIB), ISBN 979-8-3503-6072-1, 2024.
Digital Object Identifier: 10.1109/ICEIB61477.2024.10602662
[CrossRef]

[7] Prediction Model of User Purchase Behavior Based on Machine Learning, Zhai, Xiang, Shi, Peng, Xu, Liang, Wang, Yalong, Chen, Xi, 2020 IEEE International Conference on Mechatronics and Automation (ICMA), ISBN 978-1-7281-6416-8, 2020.
Digital Object Identifier: 10.1109/ICMA49215.2020.9233677
[CrossRef]

Updated today

Disclaimer: All information displayed above was retrieved by using remote connections to respective databases. For the best user experience, we update all data by using background processes, and use caches in order to reduce the load on the servers we retrieve the information from. As we have no control on the availability of the database servers and sometimes the Internet connectivity may be affected, we do not guarantee the information is correct or complete. For the most accurate data, please always consult the database sites directly. Some external links require authentication or an institutional subscription.

Web of Science® is a registered trademark of Clarivate Analytics, Scopus® is a registered trademark of Elsevier B.V., other product names, company names, brand names, trademarks and logos are the property of their respective owners.


Copyright ©2001-2024
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: 


DNS Made Easy