2/2018 - 7 |
Self-Excited Induction Generator Based Microgrid with Supercapacitor Energy Storage to Support the Start-up of Dynamic LoadsION, C. P. , SERBAN, I. |
Extra paper information in |
Click to see author's profile in SCOPUS, IEEE Xplore, Web of Science |
Download PDF (1,682 KB) | Citation | Downloads: 1,314 | Views: 3,657 |
Author keywords
microhydro power, generators, induction motors, supercapacitors, DC-DC power converters
References keywords
induction(25), power(24), energy(20), dynamic(16), generator(15), excited(14), motor(11), microgrid(11), load(11), loads(10)
Blue keywords are present in both the references section and the paper title.
About this article
Date of Publication: 2018-05-31
Volume 18, Issue 2, Year 2018, On page(s): 51 - 60
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2018.02007
Web of Science Accession Number: 000434245000007
SCOPUS ID: 85047870424
Abstract
A supercapacitor storage system (SCSS) is used for improving the dynamic performances of a microgrid (MG) fed by a self-excited induction generator (SEIG), in the case of the direct start-up of an induction motor (IM) of comparable power. The primary control system contains a voltage source inverter (VSI) with a dump load (DL), to which the SCSS is added. The control strategy for the SCSS consists of injecting power into the VSI DC-link when, because of the overload created by the IM, the DC voltage decreases under the acceptable limit. Thus, the overall performance of the SEIG-supplied MG is significantly improved. Simulations and experimental results accomplished on a laboratory-scale MG validate the effectiveness of the proposed control structure. |
References | | | Cited By |
Web of Science® Times Cited: 3 [View]
View record in Web of Science® [View]
View Related Records® [View]
Updated today
SCOPUS® Times Cited: 4
View record in SCOPUS® [Free preview]
View citations in SCOPUS® [Free preview]
[1] Seamless Integration of an Autonomous Induction Generator System into an Inverter-Based Microgrid, Ion, Catalin Petrea, Serban, Ioan, Energies, ISSN 1996-1073, Issue 4, Volume 12, 2019.
Digital Object Identifier: 10.3390/en12040638 [CrossRef]
[2] Robust Power Designing of Supplementary Damping Controller in VSC HVDC System to Improve Energy Conversion Efficiency of Wind Turbine and Power System Stability, Hamidi, A., Beiza, J., Abedinzadeh, T., Daghigh, A., Vallée, François, Journal of Electrical and Computer Engineering, ISSN 2090-0155, Issue , 2022.
Digital Object Identifier: 10.1155/2022/7645777 [CrossRef]
[3] Controllable AC/DC Integration for Power Quality Improvement in Microgrids, KARABIBER, A., Advances in Electrical and Computer Engineering, ISSN 1582-7445, Issue 2, Volume 19, 2019.
Digital Object Identifier: 10.4316/AECE.2019.02013 [CrossRef] [Full text]
Disclaimer: All information displayed above was retrieved by using remote connections to respective databases. For the best user experience, we update all data by using background processes, and use caches in order to reduce the load on the servers we retrieve the information from. As we have no control on the availability of the database servers and sometimes the Internet connectivity may be affected, we do not guarantee the information is correct or complete. For the most accurate data, please always consult the database sites directly. Some external links require authentication or an institutional subscription.
Web of Science® is a registered trademark of Clarivate Analytics, Scopus® is a registered trademark of Elsevier B.V., other product names, company names, brand names, trademarks and logos are the property of their respective owners.
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania
All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.
Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.
Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.