Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.825
JCR 5-Year IF: 0.752
SCOPUS CiteScore: 2.5
Issues per year: 4
Current issue: Nov 2022
Next issue: Feb 2023
Avg review time: 74 days
Avg accept to publ: 48 days
APC: 300 EUR


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,051,543 unique visits
825,704 downloads
Since November 1, 2009



No robots online now


SCOPUS CiteScore

SCOPUS CiteScore


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 22 (2022)
 
     »   Issue 4 / 2022
 
     »   Issue 3 / 2022
 
     »   Issue 2 / 2022
 
     »   Issue 1 / 2022
 
 
 Volume 21 (2021)
 
     »   Issue 4 / 2021
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
 Volume 20 (2020)
 
     »   Issue 4 / 2020
 
     »   Issue 3 / 2020
 
     »   Issue 2 / 2020
 
     »   Issue 1 / 2020
 
 
 Volume 19 (2019)
 
     »   Issue 4 / 2019
 
     »   Issue 3 / 2019
 
     »   Issue 2 / 2019
 
     »   Issue 1 / 2019
 
 
  View all issues  




SAMPLE ARTICLES

Design Options for Current Limit and Power Limit Circuit Protections for LDOs, PLESA, C.-S., DIMITRIU, B., NEAG, M.
Issue 1/2019

AbstractPlus

Day-Ahead Scheduling, Simulation, and Real-Time Control of an Islanded Microgrid, IGNAT-BALACI, A., SZILAGYI, E., PETREUS, D.
Issue 4/2021

AbstractPlus

On Board Neuro Fuzzy Inverse Optimal Control for Type 1 Diabetes Mellitus Treatment: In-Silico Testing, RIOS, Y., GARCIA-RODRIGUEZ, J., SANCHEZ, E., ALANIS, A., RUIZ-VELAZQUEZ, E., PARDO-GARCIA, A.
Issue 3/2022

AbstractPlus

A Fuzzy AHP Approach for Security Risk Assessment in SCADA Networks, MARKOVIC-PETROVIC, J. D., STOJANOVIC, M. D., BOSTJANCIC RAKAS, S. V.
Issue 3/2019

AbstractPlus

A Wind Energy Prediction Scheme Combining Cauchy Variation and Reverse Learning Strategy, WU, X., SHEN, X., ZHANG, J., ZHANG, Y.
Issue 4/2021

AbstractPlus

Shannon Energy Application for Detection of ECG R-peak using Bandpass Filter and Stockwell Transform Methods, SUBOH, M. Z., JAAFAR, R., NAYAN, N. A., HARUN, N. H.
Issue 3/2020

AbstractPlus




LATEST NEWS

2022-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2021. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.825 (0.722 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.752.

2022-Jun-16
SCOPUS published the CiteScore for 2021, computed by using an improved methodology, counting the citations received in 2018-2021 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering in 2021 is 2.5, the same as for 2020 but better than all our previous results.

2021-Jun-30
Clarivate Analytics published the InCites Journal Citations Report for 2020. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.221 (1.053 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.961.

2021-Jun-06
SCOPUS published the CiteScore for 2020, computed by using an improved methodology, counting the citations received in 2017-2020 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering in 2020 is 2.5, better than all our previous results.

2021-Apr-15
Release of the v3 version of AECE Journal website. We moved to a new server and implemented the latest cryptographic protocols to assure better compatibility with the most recent browsers. Our website accepts now only TLS 1.2 and TLS 1.3 secure connections.

Read More »


    
 

  3/2010 - 19
View TOC | « Previous Article | Next Article »

 HIGH-IMPACT PAPER 

Approaches in High Impedance Fault Detection - A Chronological Review

SEDIGHIZADEH, M. See more information about SEDIGHIZADEH, M. on SCOPUS See more information about SEDIGHIZADEH, M. on IEEExplore See more information about SEDIGHIZADEH, M. on Web of Science, REZAZADEH, A. See more information about  REZAZADEH, A. on SCOPUS See more information about  REZAZADEH, A. on SCOPUS See more information about REZAZADEH, A. on Web of Science, ELKALASHY, N. I. See more information about ELKALASHY, N. I. on SCOPUS See more information about ELKALASHY, N. I. on SCOPUS See more information about ELKALASHY, N. I. on Web of Science
 
View the paper record and citations in View the paper record and citations in Google Scholar
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,146 KB) | Citation | Downloads: 2,509 | Views: 3,482

Author keywords
chronological, classic, detection, high impedance fault, heuristic

References keywords
No relevant keywords could be extracted from the references.

About this article
Date of Publication: 2010-08-31
Volume 10, Issue 3, Year 2010, On page(s): 114 - 128
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2010.03019
Web of Science Accession Number: 000281805600019
SCOPUS ID: 77956625970

Abstract
Quick view
Full text preview
This paper reviews the major contributions to the high impedance fault (HIF) detection field throughout a 48-year period, from 1960 up to 2008, from classic approaches to heuristic algorithms. After surveying around 225 papers in the field, the amount of existing works for each method is identified and classified. The paper concludes with comparative tables and graphs demonstrating the frequency of each high impedance fault detection methods, and so it can be used as a guideline for researchers in this field.


References | Cited By

Cited-By Clarivate Web of Science

Web of Science® Times Cited: 60 [View]
View record in Web of Science® [View]
View Related Records® [View]

Updated today


Cited-By SCOPUS

SCOPUS® Times Cited: 83
View record in SCOPUS®
[Free preview]
View citations in SCOPUS® [Free preview]

Updated today

Cited-By CrossRef

[1] A statistical-based criterion for incipient fault detection in underground power cables established on voltage waveform characteristics, Samet, Haidar, Tajdinian, Mohsen, Khaleghian, Saeed, Ghanbari, Teymoor, Electric Power Systems Research, ISSN 0378-7796, Issue , 2021.
Digital Object Identifier: 10.1016/j.epsr.2021.107303
[CrossRef]

[2] Fault detection in smart grids with time-varying distributed generation using wavelet energy and evolving neural networks, Lucas, Fabricio, Costa, Pyramo, Batalha, Rose, Leite, Daniel, Škrjanc, Igor, Evolving Systems, ISSN 1868-6478, Issue 2, Volume 11, 2020.
Digital Object Identifier: 10.1007/s12530-020-09328-3
[CrossRef]

[3] Multicycle Incipient Fault Detection and Location for Medium Voltage Underground Cable, Zhang, Wenhai, Xiao, Xianyong, Zhou, Kai, Xu, Wilsun, Jing, Yindi, IEEE Transactions on Power Delivery, ISSN 0885-8977, Issue 3, Volume 32, 2017.
Digital Object Identifier: 10.1109/TPWRD.2016.2615886
[CrossRef]

[4] Voltage Based Detection Method for High Impedance Fault in a Distribution System, Thomas, Mini Shaji, Bhaskar, Namrata, Prakash, Anupama, Journal of The Institution of Engineers (India): Series B, ISSN 2250-2106, Issue 3, Volume 97, 2016.
Digital Object Identifier: 10.1007/s40031-015-0203-7
[CrossRef]

[5] A detection method of high impedance arcing fault for distribution network with distributed generation based on CEEMDAN and TEO algorithm, Shu, Hongchun, Deng, Yaqi, Dong, Jun, Cao, Pulin, Yang, Bo, Bo, Zhiqian, International Transactions on Electrical Energy Systems, ISSN 2050-7038, Issue 8, Volume 31, 2021.
Digital Object Identifier: 10.1002/2050-7038.12926
[CrossRef]

[6] High-impedance fault detection on downed conductor in overhead distribution networks, Wontroba, Aldair, Morais, Adriano Peres, Cardoso, Ghendy Junior, Vieira, João Paulo Abreu, Farias, Patrick Escalante, Gallas, Marion, Rossini, Jean Pereira, Electric Power Systems Research, ISSN 0378-7796, Issue , 2022.
Digital Object Identifier: 10.1016/j.epsr.2022.108216
[CrossRef]

[7] Approach for identification and classification of HIFs in medium voltage distribution networks, Hubana, Tarik, Saric, Mirza, Avdaković, Samir, IET Generation, Transmission & Distribution, ISSN 1751-8695, Issue 5, Volume 12, 2018.
Digital Object Identifier: 10.1049/iet-gtd.2017.0883
[CrossRef]

[8] High Impedance Fault Detection using Advanced Distortion Detection Technique, Bhandia, Rishabh, Chavez Muro, Jose De Jesus, Cvetkovic, Milos, Palensky, Peter, IEEE Transactions on Power Delivery, ISSN 0885-8977, 2020.
Digital Object Identifier: 10.1109/TPWRD.2020.2973829
[CrossRef]

[9] Review on microgrids protection, Beheshtaein, Siavash, Cuzner, Robert, Savaghebi, Mehdi, Guerrero, Josep M., IET Generation, Transmission & Distribution, ISSN 1751-8687, Issue 6, Volume 13, 2019.
Digital Object Identifier: 10.1049/iet-gtd.2018.5212
[CrossRef]

[10] Analysis of typical PLC pulses for sensing high-impedance faults based on time-domain reflectometry, de Oliveira, Lucas Giroto, Filomeno, Mateus de L., Colla, Luiz Fernando, Vincent Poor, H., Ribeiro, Moisés V., International Journal of Electrical Power & Energy Systems, ISSN 0142-0615, Issue , 2022.
Digital Object Identifier: 10.1016/j.ijepes.2021.107168
[CrossRef]

[11] AI in arcing‐HIF detection: a brief review, Hao, Bai, IET Smart Grid, ISSN 2515-2947, Issue 4, Volume 3, 2020.
Digital Object Identifier: 10.1049/iet-stg.2019.0091
[CrossRef]

[12] High-impedance faults in power distribution systems: A narrative of the field’s developments, Gomes, D.P.S., Ozansoy, C., ISA Transactions, ISSN 0019-0578, Issue , 2021.
Digital Object Identifier: 10.1016/j.isatra.2021.02.018
[CrossRef]

[13] Wavelet-Analysis-Based Singular-Value-Decomposition Algorithm for Weak Arc Fault Detection via Current Amplitude Normalization, Shen, Yu-Long, Wai, Rong-Jong, IEEE Access, ISSN 2169-3536, Issue , 2021.
Digital Object Identifier: 10.1109/ACCESS.2021.3077871
[CrossRef]

[14] Non-linear high impedance fault distance estimation in power distribution systems: A continually online-trained neural network approach, Farias, Patrick E., de Morais, Adriano Peres, Rossini, Jean Pereira, Cardoso, Ghendy, Electric Power Systems Research, ISSN 0378-7796, Issue , 2018.
Digital Object Identifier: 10.1016/j.epsr.2017.11.018
[CrossRef]

[15] A pilot-based unit protection scheme for meshed microgrids using apparent resistance estimation, Mohammadi, Sina, Ojaghi, Mansour, Jalilvand, Abolfazl, Shafiee, Qobad, International Journal of Electrical Power & Energy Systems, ISSN 0142-0615, Issue , 2021.
Digital Object Identifier: 10.1016/j.ijepes.2020.106564
[CrossRef]

[16] Fault detection and location in power distribution systems: The usefulness of the HS-OFDM scheme for time-domain reflectometry, de Oliveira, Lucas Giroto, Filomeno, Mateus de L., Vincent Poor, H., Ribeiro, Moisés V., Electric Power Systems Research, ISSN 0378-7796, Issue , 2022.
Digital Object Identifier: 10.1016/j.epsr.2021.107600
[CrossRef]

[17] Classification of Many Abnormal Events in Radial Distribution Feeders Using the Complex Morlet Wavelet and Decision Trees, Almalki, Mishari, Hatziadoniu, Constantine, Energies, ISSN 1996-1073, Issue 3, Volume 11, 2018.
Digital Object Identifier: 10.3390/en11030546
[CrossRef]

[18] Behavioral Dynamics of High Impedance Fault Under Different Line Parameters, Lavanya, S., Prabakaran, S., Ashok Kumar, N., International Journal of Electrical and Electronics Research, ISSN 2347-470X, Issue 2, Volume 10, 2022.
Digital Object Identifier: 10.37391/ijeer.100251
[CrossRef]

[19] Detection of High Impedance Fault in Power Distribution Systems Using Mathematical Morphology, Gautam, Suresh, Brahma,, IEEE Transactions on Power Systems, ISSN 0885-8950, Issue 2, Volume 28, 2013.
Digital Object Identifier: 10.1109/TPWRS.2012.2215630
[CrossRef]

[20] High-Impedance Fault Detection in the Distribution Network Using the Time-Frequency-Based Algorithm, Ghaderi, Amin, Mohammadpour, Hossein Ali, Ginn, Herbert L., Shin, Yong-June, IEEE Transactions on Power Delivery, ISSN 0885-8977, Issue 3, Volume 30, 2015.
Digital Object Identifier: 10.1109/TPWRD.2014.2361207
[CrossRef]

[21] Analysis of High-Frequency Impedance Measurement Techniques for Power Line Network Sensing, Passerini, Federico, Tonello, Andrea M., IEEE Sensors Journal, ISSN 1530-437X, Issue 23, Volume 17, 2017.
Digital Object Identifier: 10.1109/JSEN.2017.2732737
[CrossRef]

[22] Detection of High Impedance Fault in Distribution Networks, Kavaskar, Sekar, Mohanty, Nalin Kant, Ain Shams Engineering Journal, ISSN 2090-4479, Issue 1, Volume 10, 2019.
Digital Object Identifier: 10.1016/j.asej.2018.04.006
[CrossRef]

[23] Directional, High-Impedance Fault Detection in Isolated Neutral Distribution Grids, Gonzalez, Carlos, Tant, Jeroen, Germain, Jean Gardy, De Rybel, Tom, Driesen, Johan, IEEE Transactions on Power Delivery, ISSN 0885-8977, Issue 5, Volume 33, 2018.
Digital Object Identifier: 10.1109/TPWRD.2018.2808428
[CrossRef]

[24] Protection Scheme for Fast Detection and Interruption of High-Impedance Faults on Rate-Limited DC Distribution Networks, Wunderlich, Andrew S., Bauer, Daniel, Santi, Enrico, Dougal, Roger A., Benigni, Andrea, Bennett, Rob, Zubieta, Luis E., IEEE Journal of Emerging and Selected Topics in Power Electronics, ISSN 2168-6777, Issue 3, Volume 9, 2021.
Digital Object Identifier: 10.1109/JESTPE.2020.2998056
[CrossRef]

[25] High impedance fault detection in power distribution systems using wavelet transform and evolving neural network, Silva, Sergio, Costa, Pyramo, Gouvea, Maury, Lacerda, Alcyr, Alves, Franciele, Leite, Daniel, Electric Power Systems Research, ISSN 0378-7796, Issue , 2018.
Digital Object Identifier: 10.1016/j.epsr.2017.08.039
[CrossRef]

[26] Smart Grid Monitoring Using Power Line Modems: Anomaly Detection and Localization, Passerini, Federico, Tonello, Andrea M., IEEE Transactions on Smart Grid, ISSN 1949-3053, Issue 6, Volume 10, 2019.
Digital Object Identifier: 10.1109/TSG.2019.2899264
[CrossRef]

[27] High impedance fault localization: A comprehensive review, Baharozu, Eren, Ilhan, Suat, Soykan, Gurkan, Electric Power Systems Research, ISSN 0378-7796, Issue , 2023.
Digital Object Identifier: 10.1016/j.epsr.2022.108892
[CrossRef]

[28] A comprehensive review on DC arc faults and their diagnosis methods in photovoltaic systems, Lu, Shibo, Phung, B.T., Zhang, Daming, Renewable and Sustainable Energy Reviews, ISSN 1364-0321, Issue , 2018.
Digital Object Identifier: 10.1016/j.rser.2018.03.010
[CrossRef]

[29] Smart Grid Monitoring Using Power Line Modems: Effect of Anomalies on Signal Propagation, Passerini, Federico, Tonello, Andrea M., IEEE Access, ISSN 2169-3536, Issue , 2019.
Digital Object Identifier: 10.1109/ACCESS.2019.2901861
[CrossRef]

[30] Orthogonal Chirp-Division Multiplexing for Power Line Sensing via Time-Domain Reflectometry, Giroto de Oliveira, Lucas, de Lima Filomeno, Mateus, Poor, H. Vincent, Vidal Ribeiro, Moises, IEEE Sensors Journal, ISSN 1530-437X, Issue 2, Volume 21, 2021.
Digital Object Identifier: 10.1109/JSEN.2019.2932994
[CrossRef]

[31] High-Sensitivity Vegetation High-Impedance Fault Detection Based on Signal's High-Frequency Contents, Gomes, Douglas P. S., Ozansoy, Cagil, Ulhaq, Anwaar, IEEE Transactions on Power Delivery, ISSN 0885-8977, Issue 3, Volume 33, 2018.
Digital Object Identifier: 10.1109/TPWRD.2018.2791986
[CrossRef]

[32] Fault Detection and Localization in Transmission Lines with a Static Synchronous Series Compensator, REYES-ARCHUNDIA, E., GUARDADO, J. L., MORENO-GOYTIA, E. L., GUTIERREZ-GNECCHI, J. A., MARTINEZ-CARDENAS, F., Advances in Electrical and Computer Engineering, ISSN 1582-7445, Issue 3, Volume 15, 2015.
Digital Object Identifier: 10.4316/AECE.2015.03003
[CrossRef] [Full text]

[33] Interharmonics based high impedance fault detection in distribution systems using maximum overlap wavelet packet transform and a modified empirical mode decomposition, Gadanayak, Debadatta Amaresh, Mallick, Ranjan Kumar, International Journal of Electrical Power & Energy Systems, ISSN 0142-0615, Issue , 2019.
Digital Object Identifier: 10.1016/j.ijepes.2019.04.050
[CrossRef]

[34] Evolving neuro-fuzzy network for real-time high impedance fault detection and classification, Silva, Sergio, Costa, Pyramo, Santana, Marcio, Leite, Daniel, Neural Computing and Applications, ISSN 0941-0643, Issue 12, Volume 32, 2020.
Digital Object Identifier: 10.1007/s00521-018-3789-2
[CrossRef]

[35] Method for high-impedance fault detection, Laaksonen, Hannu, Hovila, Petri, CIRED - Open Access Proceedings Journal, ISSN 2515-0855, Issue 1, Volume 2017, 2017.
Digital Object Identifier: 10.1049/oap-cired.2017.0308
[CrossRef]

[36] Vegetation High-Impedance Faults’ High-Frequency Signatures via Sparse Coding, Gomes, Douglas Pinto Sampaio, Ozansoy, Cagil, Ulhaq, Anwaar, IEEE Transactions on Instrumentation and Measurement, ISSN 0018-9456, Issue 7, Volume 69, 2020.
Digital Object Identifier: 10.1109/TIM.2019.2950822
[CrossRef]

[37] Optimal Detection and Identification of DC Series Arc in Power Distribution System on Shipboards, Ji, Hong-Keun, Wang, Guoming, Kil, Gyung-Suk, Energies, ISSN 1996-1073, Issue 22, Volume 13, 2020.
Digital Object Identifier: 10.3390/en13225973
[CrossRef]

[38] Combined Mathematical Morphology and Data Mining Based High Impedance Fault Detection, Sekar, Kavaskar, Mohanty, Nalin Kant, Energy Procedia, ISSN 1876-6102, Issue , 2017.
Digital Object Identifier: 10.1016/j.egypro.2017.05.161
[CrossRef]

[39] Model-Based General Arcing Fault Detection in Medium-Voltage Distribution Lines, Zhang, Wenhai, Jing, Yindi, Xiao, Xianyong, IEEE Transactions on Power Delivery, ISSN 0885-8977, Issue 5, Volume 31, 2016.
Digital Object Identifier: 10.1109/TPWRD.2016.2518738
[CrossRef]

[40] Upgrading the Power Grid Functionalities with Broadband Power Line Communications: Basis, Applications, Current Trends and Challenges, González-Ramos, Jon, Uribe-Pérez, Noelia, Sendin, Alberto, Gil, David, de la Vega, David, Fernández, Igor, Núñez, Ignacio Javier, Sensors, ISSN 1424-8220, Issue 12, Volume 22, 2022.
Digital Object Identifier: 10.3390/s22124348
[CrossRef]

[41] Taxonomy of high impedance fault detection algorithm, Mishra, Manohar, Panigrahi, Rasmi Ranjan, Measurement, ISSN 0263-2241, Issue , 2019.
Digital Object Identifier: 10.1016/j.measurement.2019.106955
[CrossRef]

[42] Detection of High Impedance Faults on Compensated Distribution Networks, McKinnon, Cory, Gargoom, Ameen, Rabbani, Mahbub, Oo, Aman, 2019 29th Australasian Universities Power Engineering Conference (AUPEC), ISBN 978-1-7281-5043-7, 2019.
Digital Object Identifier: 10.1109/AUPEC48547.2019.211854
[CrossRef]

[43] Synthetic High Impedance Fault Data through Deep Convolutional Generated Adversarial Network, Yang, Kun, Gao, Wei, Fan, Rui, Yin, Tianzhixi, Lian, Jianming, 2021 IEEE Green Technologies Conference (GreenTech), ISBN 978-1-7281-9139-3, 2021.
Digital Object Identifier: 10.1109/GreenTech48523.2021.00061
[CrossRef]

[44] High impedance fault detection method efficiency: Simulation vs. real-world data acquisition, Ghaderi, Amin, Mohammadpour, Hossein Ali, Ginn, Herbert, 2015 IEEE Power and Energy Conference at Illinois (PECI), ISBN 978-1-4799-7949-3, 2015.
Digital Object Identifier: 10.1109/PECI.2015.7064882
[CrossRef]

[45] The arcing fault based multi-cycle incipient fault detection for underground cable, Zhang, Wenhai, Tang, Tuhua, Yin, Xinglu, Qu, Guanglong, Wang, Yang, 2016 China International Conference on Electricity Distribution (CICED), ISBN 978-1-4673-9070-5, 2016.
Digital Object Identifier: 10.1109/CICED.2016.7576142
[CrossRef]

[46] High impedance arcing fault detection in MV networks using discrete wavelet transform and Artificial Neural Networks, Vijayachandran, Gayathri, Mathew, Bobin.K., 2012 International Conference on Green Technologies (ICGT), ISBN 978-1-4673-2636-0, 2012.
Digital Object Identifier: 10.1109/ICGT.2012.6477953
[CrossRef]

[47] Mathematical morphology-based fault detection technique for power distribution systems subjected to resonant grounding, Barik, M. A., Gargoom, A., Mahmud, M. A., Haque, M. E., Oo, Amanullah M. T., Al-Khalidi, Hassan, 2017 IEEE Power & Energy Society General Meeting, ISBN 978-1-5386-2212-4, 2017.
Digital Object Identifier: 10.1109/PESGM.2017.8274459
[CrossRef]

[48] Enhanced MV microgrid protection scheme for detecting high-impedance faults, Laaksonen, Hannu, Hovila, Petri, 2017 IEEE Manchester PowerTech, ISBN 978-1-5090-4237-1, 2017.
Digital Object Identifier: 10.1109/PTC.2017.7980899
[CrossRef]

[49] Detection of High Impedance Fault in DC Microgrid Using Impedance Prediction Technique, Taheri, Behrooz, Hosseini, Seyed Amir, 2020 15th International Conference on Protection and Automation of Power Systems (IPAPS), ISBN 978-1-6654-1229-2, 2020.
Digital Object Identifier: 10.1109/IPAPS52181.2020.9375543
[CrossRef]

[50] Supervised Fault Detection in Energy Grids Measuring Electrical Quantities in the PLC Band, Letizia, Nunzio A., Tonello, Andrea M., 2020 IEEE International Symposium on Power Line Communications and its Applications (ISPLC), ISBN 978-1-7281-4816-8, 2020.
Digital Object Identifier: 10.1109/ISPLC48789.2020.9115408
[CrossRef]

[51] Faulty Feeder Identification Technology utilizing Grid-Connected Converters for Reduced Outage Zone in Smart Grids, Goyal, Huma, Kikuchi, Akira, 2022 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), ISBN 978-1-6654-3775-2, 2022.
Digital Object Identifier: 10.1109/ISGT50606.2022.9817553
[CrossRef]

[52] High Impedance Fault Classification Using Wavelet Transform and Artificial Neural Network, Kannan, A. Nirmal, Rathinam, A., 2012 Fourth International Conference on Computational Intelligence and Communication Networks, ISBN 978-0-7695-4850-0, 2012.
Digital Object Identifier: 10.1109/CICN.2012.122
[CrossRef]

[53] An Integrated High Impedance Fault Detection Approach for Renewable Penetrated Distribution Network, Paras, Y., Prabal Reddy, M., Shyamnath, E., Biswal, Monalisa, 2020 IEEE 7th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), ISBN 978-1-6654-0373-3, 2020.
Digital Object Identifier: 10.1109/UPCON50219.2020.9376427
[CrossRef]

[54] High Impedance Fault Detection Based on HS-Transform and Decision Tree Techniques, Nakho, A., Moloi, K., Hamam, Y., 2021 Southern African Universities Power Engineering Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa (SAUPEC/RobMech/PRASA), ISBN 978-1-6654-0345-0, 2021.
Digital Object Identifier: 10.1109/SAUPEC/RobMech/PRASA52254.2021.9377236
[CrossRef]

[55] Full duplex power line communication modems for network sensing, Passerini, Federico, Tonello, Andrea M., 2017 IEEE International Conference on Smart Grid Communications (SmartGridComm), ISBN 978-1-5386-0943-9, 2017.
Digital Object Identifier: 10.1109/SmartGridComm.2017.8340692
[CrossRef]

[56] A hybrid method for high impedance fault classification and detection, Moloi, K., Jordaan, J. A., Hamam, Y., 2019 Southern African Universities Power Engineering Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa (SAUPEC/RobMech/PRASA), ISBN 978-1-7281-0369-3, 2019.
Digital Object Identifier: 10.1109/RoboMech.2019.8704765
[CrossRef]

[57] Influence of Non-Linear Load on Single-Phase Fault Current in Electrical Networks with Isolated Neutral, Kazhekin, Ilya E., Finko, Sergey P., 2022 International Ural Conference on Electrical Power Engineering (UralCon), ISBN 978-1-6654-6652-3, 2022.
Digital Object Identifier: 10.1109/UralCon54942.2022.9906778
[CrossRef]

[58] High Impedance Fault Detection in Real-Time and Evaluation Using Hardware-In-Loop Testing, Bhandia, Rishabh, Chavez, Jose J., Cvetkovic, Milos, Palensky, Peter, IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society, ISBN 978-1-5090-6684-1, 2018.
Digital Object Identifier: 10.1109/IECON.2018.8591824
[CrossRef]

[59] Differential Technique for Fault Detection and Classification in Distribution System consisting Distributed Generation, Dubey, Kartika, Jena, Premalata, 2022 IEEE IAS Global Conference on Emerging Technologies (GlobConET), ISBN 978-1-6654-4357-9, 2022.
Digital Object Identifier: 10.1109/GlobConET53749.2022.9872390
[CrossRef]

[60] High impedance fault detection technique based on Discrete Wavelet Transform and support vector machine in power distribution networks, Moloi, K., Jordaan, J. A., Hamam, Y., 2017 IEEE AFRICON, ISBN 978-1-5386-2775-4, 2017.
Digital Object Identifier: 10.1109/AFRCON.2017.8095447
[CrossRef]

[61] High Impedance Fault Classification and Localization Method for Power Distribution Network, Moloi, K., Jordaan, J. A., Hamam, Y., 2018 IEEE PES/IAS PowerAfrica, ISBN 978-1-5386-4163-7, 2018.
Digital Object Identifier: 10.1109/PowerAfrica.2018.8520972
[CrossRef]

[62] A Facility for Physical Simulation of High Impedance Faults in Low Voltage Networks, Sifat, Anwarul Islam, Bailey, Joseph, Hamilton, Kent, McFadden, Fiona J Stevens, Rayudu, Ramesh, Hunze, Arvid, 2019 IEEE Power & Energy Society General Meeting (PESGM), ISBN 978-1-7281-1981-6, 2019.
Digital Object Identifier: 10.1109/PESGM40551.2019.8973913
[CrossRef]

[63] A novel high impedance fault detection technique in distribution systems with distributed generators, Nayak, Paresh Kumar, Sarwagya, Kumari, Biswal, Tapaswini, 2016 National Power Systems Conference (NPSC), ISBN 978-1-4673-9968-5, 2016.
Digital Object Identifier: 10.1109/NPSC.2016.7858855
[CrossRef]

[64] High Impedance Fault Detection in Time-Varying Distributed Generation Systems Using Adaptive Neural Networks, Lucas, Fabricio, Costa, Pyramo, Batalha, Rose, Leite, Daniel, 2018 International Joint Conference on Neural Networks (IJCNN), ISBN 978-1-5090-6014-6, 2018.
Digital Object Identifier: 10.1109/IJCNN.2018.8489453
[CrossRef]

[65] Power line fault detection and localization using high frequency impedance measurement, Passerini, Federico, Tonello, Andrea M., 2017 IEEE International Symposium on Power Line Communications and its Applications (ISPLC), ISBN 978-1-5090-2389-9, 2017.
Digital Object Identifier: 10.1109/ISPLC.2017.7897102
[CrossRef]

Updated today

Disclaimer: All information displayed above was retrieved by using remote connections to respective databases. For the best user experience, we update all data by using background processes, and use caches in order to reduce the load on the servers we retrieve the information from. As we have no control on the availability of the database servers and sometimes the Internet connectivity may be affected, we do not guarantee the information is correct or complete. For the most accurate data, please always consult the database sites directly. Some external links require authentication or an institutional subscription.

Web of Science® is a registered trademark of Clarivate Analytics, Scopus® is a registered trademark of Elsevier B.V., other product names, company names, brand names, trademarks and logos are the property of their respective owners.


Copyright ©2001-2023
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: