Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.800
JCR 5-Year IF: 1.000
SCOPUS CiteScore: 2.0
Issues per year: 4
Current issue: Feb 2024
Next issue: May 2024
Avg review time: 55 days
Avg accept to publ: 60 days
APC: 300 EUR


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,580,069 unique visits
1,024,961 downloads
Since November 1, 2009



Robots online now
bingbot
Googlebot
SemanticScholar


SCOPUS CiteScore

SCOPUS CiteScore


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 24 (2024)
 
     »   Issue 1 / 2024
 
 
 Volume 23 (2023)
 
     »   Issue 4 / 2023
 
     »   Issue 3 / 2023
 
     »   Issue 2 / 2023
 
     »   Issue 1 / 2023
 
 
 Volume 22 (2022)
 
     »   Issue 4 / 2022
 
     »   Issue 3 / 2022
 
     »   Issue 2 / 2022
 
     »   Issue 1 / 2022
 
 
 Volume 21 (2021)
 
     »   Issue 4 / 2021
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
  View all issues  


FEATURED ARTICLE

Application of the Voltage Control Technique and MPPT of Stand-alone PV System with Storage, HIVZIEFENDIC, J., VUIC, L., LALE, S., SARIC, M.
Issue 1/2022

AbstractPlus


SAMPLE ARTICLES

A New Motion Estimation Method using Modified Hexagonal Search Algorithm and Lucas-Kanade Optical Flow Technique, GHOUL, K., ZAIDI, S., LABOUDI, Z.
Issue 1/2024

AbstractPlus

A New Visual Cryptography Method Based on the Profile Hidden Markov Model, OZCAN, H., KAYA GULAGIZ, F., ALTUNCU, M. A., ILKIN, S., SAHIN, S.
Issue 1/2021

AbstractPlus

On Proposing a Novel SDN-Caching Mechanism for Optimizing Distribution in ICN Networks, NASCIMENTO, E. B., MORENO, E. D., MACEDO, D. D. J., CARLOS ERPEN de BONA, L., RIGHI, R. R., MESSINA, F.
Issue 1/2023

AbstractPlus

Enhanced Transient Performance of Wind-Driven PMSG: A Revised Control Structure of Wind-Power Converters, ALI, M. A. S.
Issue 2/2022

AbstractPlus

Lossy Compression using Adaptive Polynomial Image Encoding, OTHMAN, S., MOHAMED, A., ABOUALI, A., NOSSAIR, Z.
Issue 1/2021

AbstractPlus

Quantum Steganography Using Two Hidden Thresholds, TUDORACHE, A.-G., MANTA, V., CARAIMAN, S.
Issue 4/2021

AbstractPlus




LATEST NEWS

2023-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2022. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.800 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 1.000.

2023-Jun-05
SCOPUS published the CiteScore for 2022, computed by using an improved methodology, counting the citations received in 2019-2022 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2022 is 2.0. For "General Computer Science" we rank #134/233 and for "Electrical and Electronic Engineering" we rank #478/738.

2022-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2021. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.825 (0.722 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.752.

2022-Jun-16
SCOPUS published the CiteScore for 2021, computed by using an improved methodology, counting the citations received in 2018-2021 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2021 is 2.5, the same as for 2020 but better than all our previous results.

2021-Jun-30
Clarivate Analytics published the InCites Journal Citations Report for 2020. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.221 (1.053 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.961.

Read More »


    
 

  3/2016 - 15
View TOC | « Previous Article | Next Article »

Face Recognition Performance Improvement using a Similarity Score of Feature Vectors based on Probabilistic Histograms

SRIKOTE, G. See more information about SRIKOTE, G. on SCOPUS See more information about SRIKOTE, G. on IEEExplore See more information about SRIKOTE, G. on Web of Science, MEESOMBOON, A. See more information about MEESOMBOON, A. on SCOPUS See more information about MEESOMBOON, A. on SCOPUS See more information about MEESOMBOON, A. on Web of Science
 
View the paper record and citations in View the paper record and citations in Google Scholar
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,261 KB) | Citation | Downloads: 942 | Views: 2,640

Author keywords
gaussian mixture model, expectation-maximization algorithm, similarity score, probabilistic histogram, face recognition

References keywords
recognition(12), face(10), pattern(7), vision(6), image(5)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2016-08-31
Volume 16, Issue 3, Year 2016, On page(s): 107 - 112
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2016.03015
Web of Science Accession Number: 000384750000015
SCOPUS ID: 84991066571

Abstract
Quick view
Full text preview
This paper proposes an improved performance algorithm of face recognition to identify two face mismatch pairs in cases of incorrect decisions. The primary feature of this method is to deploy the similarity score with respect to Gaussian components between two previously unseen faces. Unlike the conventional classical vector distance measurement, our algorithms also consider the plot of summation of the similarity index versus face feature vector distance. A mixture of Gaussian models of labeled faces is also widely applicable to different biometric system parameters. By comparative evaluations, it has been shown that the efficiency of the proposed algorithm is superior to that of the conventional algorithm by an average accuracy of up to 1.15% and 16.87% when compared with 3x3 Multi-Region Histogram (MRH) direct-bag-of-features and Principal Component Analysis (PCA)-based face recognition systems, respectively. The experimental results show that similarity score consideration is more discriminative for face recognition compared to feature distance. Experimental results of Labeled Face in the Wild (LFW) data set demonstrate that our algorithms are suitable for real applications probe-to-gallery identification of face recognition systems. Moreover, this proposed method can also be applied to other recognition systems and therefore additionally improves recognition scores.


References | Cited By

Cited-By Clarivate Web of Science

Web of Science® Times Cited: 1 [View]
View record in Web of Science® [View]
View Related Records® [View]

Updated today


Cited-By SCOPUS

SCOPUS® Times Cited: 1
View record in SCOPUS®
[Free preview]
View citations in SCOPUS® [Free preview]

Updated today

Cited-By CrossRef

[1] Real-Time Facial Emotion Recognition Framework for Employees of Organizations Using Raspberry-Pi, Rathour, Navjot, Khanam, Zeba, Gehlot, Anita, Singh, Rajesh, Rashid, Mamoon, AlGhamdi, Ahmed Saeed, Alshamrani, Sultan S., Applied Sciences, ISSN 2076-3417, Issue 22, Volume 11, 2021.
Digital Object Identifier: 10.3390/app112210540
[CrossRef]

Updated today

Disclaimer: All information displayed above was retrieved by using remote connections to respective databases. For the best user experience, we update all data by using background processes, and use caches in order to reduce the load on the servers we retrieve the information from. As we have no control on the availability of the database servers and sometimes the Internet connectivity may be affected, we do not guarantee the information is correct or complete. For the most accurate data, please always consult the database sites directly. Some external links require authentication or an institutional subscription.

Web of Science® is a registered trademark of Clarivate Analytics, Scopus® is a registered trademark of Elsevier B.V., other product names, company names, brand names, trademarks and logos are the property of their respective owners.


Copyright ©2001-2024
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: 


DNS Made Easy