Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.825
JCR 5-Year IF: 0.752
SCOPUS CiteScore: 2.5
Issues per year: 4
Current issue: Aug 2022
Next issue: Nov 2022
Avg review time: 77 days
Avg accept to publ: 48 days
APC: 300 EUR


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

1,973,412 unique visits
787,765 downloads
Since November 1, 2009



Robots online now
bingbot


SCOPUS CiteScore

SCOPUS CiteScore


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 22 (2022)
 
     »   Issue 3 / 2022
 
     »   Issue 2 / 2022
 
     »   Issue 1 / 2022
 
 
 Volume 21 (2021)
 
     »   Issue 4 / 2021
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
 Volume 20 (2020)
 
     »   Issue 4 / 2020
 
     »   Issue 3 / 2020
 
     »   Issue 2 / 2020
 
     »   Issue 1 / 2020
 
 
 Volume 19 (2019)
 
     »   Issue 4 / 2019
 
     »   Issue 3 / 2019
 
     »   Issue 2 / 2019
 
     »   Issue 1 / 2019
 
 
  View all issues  








LATEST NEWS

2022-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2021. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.825 (0.722 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.752.

2022-Jun-16
SCOPUS published the CiteScore for 2021, computed by using an improved methodology, counting the citations received in 2018-2021 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering in 2021 is 2.5, the same as for 2020 but better than all our previous results.

2021-Jun-30
Clarivate Analytics published the InCites Journal Citations Report for 2020. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.221 (1.053 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.961.

2021-Jun-06
SCOPUS published the CiteScore for 2020, computed by using an improved methodology, counting the citations received in 2017-2020 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering in 2020 is 2.5, better than all our previous results.

2021-Apr-15
Release of the v3 version of AECE Journal website. We moved to a new server and implemented the latest cryptographic protocols to assure better compatibility with the most recent browsers. Our website accepts now only TLS 1.2 and TLS 1.3 secure connections.

Read More »


    
 

  1/2021 - 7

Data-Driven Predictive Control of a Pneumatic Ankle Foot Orthosis

ULKIR, O. See more information about ULKIR, O. on SCOPUS See more information about ULKIR, O. on IEEExplore See more information about ULKIR, O. on Web of Science, AKGUN, G. See more information about  AKGUN, G. on SCOPUS See more information about  AKGUN, G. on SCOPUS See more information about AKGUN, G. on Web of Science, NASAB, A. See more information about  NASAB, A. on SCOPUS See more information about  NASAB, A. on SCOPUS See more information about NASAB, A. on Web of Science, KAPLANOGLU, E. See more information about KAPLANOGLU, E. on SCOPUS See more information about KAPLANOGLU, E. on SCOPUS See more information about KAPLANOGLU, E. on Web of Science
 
View the paper record and citations in View the paper record and citations in Google Scholar
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,450 KB) | Citation | Downloads: 602 | Views: 737

Author keywords
rehabilitation assistance, ankle-foot orthosis, subspace identification, PID, data-driven predictive control

References keywords
foot(25), control(25), ankle(23), orthosis(22), design(12), systems(10), rehabilitation(8), predictive(7), active(7), driven(6)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2021-02-28
Volume 21, Issue 1, Year 2021, On page(s): 65 - 74
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2021.01007
Web of Science Accession Number: 000624018800007
SCOPUS ID: 85102782699

Abstract
Quick view
Full text preview
We present the design and control of a pneumatic ankle-foot orthosis (P-AFO) device powered via bi-directional pneumatic rotary actuator and a pneumatic artificial muscle for rehabilitation assistance and treatment of neuromuscular disorders. The rotary actuator and the pneumatic muscle assist with dorsiflexion and plantar flexion, respectively. The prototype is also equipped with simple sensor system for gait pattern analysis. The P-AFO has the capability of 20 degrees dorsiflexion from the plantar flexion and 12 degrees dorsiflexion from the neutral position of an ankle joint. The data-driven predictive control (DDPC) algorithm has been designed for P-AFO to follow desired gait cycle trajectories while rectifying the nonlinearity and uncertainties of the pneumatic actuators. The design of DDPC is realized from the subspace identification matrices acquired by the input-output values obtained as a result of an open-loop operation. The control structure is completely data-based without certain use of a model in the control implementation. In order to control the developed P-AFO prototype device, the suggested controller was implemented in a real-time operating system. Experimental studies are performed to compare the proposed controller with a three-term controller (PID) in trajectory tracking of the P-AFO.


References | Cited By

Cited-By Clarivate Web of Science

Web of Science® Times Cited: 1 [View]
View record in Web of Science® [View]
View Related Records® [View]

Updated today


Cited-By SCOPUS

SCOPUS® Times Cited: 1
View record in SCOPUS®
[Free preview]
View citations in SCOPUS® [Free preview]

Updated today

Cited-By CrossRef

[1] Lower-Limb Robotic Assistance Devices for Drop Foot: A Review, Al-Rahmani, Nour, Mohan, Dhanya Menoth, Awad, Mohammad I., Wasti, Sabahat Asim, Hussain, Irfan, Khalaf, Kinda, IEEE Access, ISSN 2169-3536, Issue , 2022.
Digital Object Identifier: 10.1109/ACCESS.2022.3174686
[CrossRef]

Updated today

Disclaimer: All information displayed above was retrieved by using remote connections to respective databases. For the best user experience, we update all data by using background processes, and use caches in order to reduce the load on the servers we retrieve the information from. As we have no control on the availability of the database servers and sometimes the Internet connectivity may be affected, we do not guarantee the information is correct or complete. For the most accurate data, please always consult the database sites directly. Some external links require authentication or an institutional subscription.

Web of Science® is a registered trademark of Clarivate Analytics, Scopus® is a registered trademark of Elsevier B.V., other product names, company names, brand names, trademarks and logos are the property of their respective owners.


Copyright ©2001-2022
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: